
Structural Foundations for
Probabilistic Programming Languages

Dario Maximilian Stein

Balliol College

University of Oxford

A thesis submitted for the degree of
DOCTOR OF PHILOSOPHY, COMPUTER SCIENCE

October 2021

The success of the probability theory in mathematics
and theoretical physics is due not so much to its
measure theoretic foundation but because it exploits
and enhances symmetries of the structures it applies to.

— MIKHAIL GROMOV, Bernoulli Lecture
- What is Probability? (EPFL)

Abstract

Probability theory and statistics are fundamental disciplines in a data-driven world. Syn-
thetic probability theory is a general, axiomatic formalism to describe their underlying struc-
tures and methods in a elegant and high-level way, abstracting away from the mathematical
foundations such as measure theory. We showcase the value of synthetic probabilistic rea-
soning to computer science by presenting a novel, synthetic analysis of three situations: the
Beta-Bernoulli process, exact conditioning on continuous random variables and an investigation
into the relationship of random higher-order functions and fresh name generation.

The synthetic approach to probability has merit not only by matching statistical practice
and achieving greater conceptual clarity, but it also lets us transfer and generalize probabilis-
tic ideas and language to other domains: A wide range of computational phenomena admit
a probabilistic analysis, such as nondeterminism, generativity (e.g. name generation), unifica-
tion, exchangeable random primitives and local state. This perspective is particularly useful if
we wish to compare or combine those effects with actual probability: We develop a purely
stochastic model of name generation (gensym) which is not only a tight semantic fit, but also
uncovers striking parallels to the theory of random functions.

Probabilistic programming is an emergent flavor of Bayesian machine learning where com-
plex statistical models are expressed through code. We argue that probabilistic programming
and synthetic probability theory are two sides of the same coin. Not only do they share a
similar goal, namely to act as an accessible, high-level interface to statistics, but synthetic
probability theories are also the natural semantic domains for probabilistic programs. Con-
versely, every probabilistic language defines its own internal theory of probability. This is a
probabilistic version of the Curry-Howard correspondence: Statistical models are programs.
This opens up the analysis and optimization of statistical inference procedures to tools from
programming language theory.

Much as category theory has served as a unifying model for logic and programming,
we argue that probabilistic programming languages arise precisely as the internal languages
of categorical probability theories. Our methods and examples draw from diverse areas of
computer science and mathematics such as rewriting theory, logical relations, linear and
universal algebra, categorical logic, measure theory and descriptive set theory.

1

Acknowledgements

I was lucky to have Sam Staton as a supervisor and to learn from his vast knowledge and
inspiring style of research. I am grateful for the many stimulating discussions and every-
day interactions with my colleagues at the Computer Science department, among them Car-
men Constantin, Swaraj Dash, Mathieu Huot, Younesse Kaddar, Ohad Kammar, Carol Mak,
Cristina Matache, Sean Moss, Hugo Paquet, Philip Saville, Jesse Sigal, Sam Speight, Ned
Summers, Dominik Wagner and Fabian Zaiser. I too wish to thank Luke Ong and Alex
Simpson for examining this thesis.

Thanks to Tobias Fritz, Tomáš Gonda and Paolo Perrone for introducing me to Markov
categories and great collaboration. My work has benefited and drawn inspiration from dis-
cussions with many further people, some of whom are Zeinab Galal, Alexander Kechris,
Paul Levy, Alex Lew and Prakash Panangaden.

Much of the material of this thesis is based on work that was conducted collaboratively
(as fully outlined in Section 1.2). I’d like to thank my previously unmentioned coauthors
Nathanael Ackerman, Nicholas Gauguin Houghton-Larsen, Cameron Freer, Daniel Roy,
Marcin Sabok, Michael Wolman and Hongseok Yang, with whom it has been a pleasure
to work. I also enjoyed the opportunity to present my work at various talks and venues. My
DPhil has been funded by the Engineering and Physical Science Research Council (EPSRC)
and the Oxford-DeepMind Graduate Scholarship.

I wish to thank Balliol College and the extraordinary graduate community I found at
Holywell Manor for the amazing time I had there. Deepest affection goes to my family,
my parents Christian and Marlies, and all my friends in Oxford, back home and across the
world: you are my dearest treasures and I wouldn’t be who I am without you.

This thesis was typeset using LATEX. The typesetting was greatly aided by the applications
QUIVER for commutative diagrams, and TIKZIT for string diagrams.

2

Contents

1 Introduction 10
1.1 Contributions . 15
1.2 Technical Summary . 17

I Background 20

2 Overview of Probabilistic Programming 20

3 Semantics of Programming Languages 21
3.1 Categorical Semantics and Internal Languages 22
3.2 Monadic Metalanguage . 23
3.3 Computational λ-calculus . 25
3.4 Fine-grained call-by-value . 26
3.5 Graphical Language: String Diagrams . 28
3.6 Monads and Algebraic Effects . 29

3.6.1 Example: Monads of Linear Combinations 31
3.6.2 Commutative Monads . 32
3.6.3 Affine Monads . 33
3.6.4 Finitary Monads . 34

3.7 Second-order Algebraic Theories . 34

4 Traditional Models of Probability 38
4.1 Finite Probability . 40
4.2 Measure-Theoretic Probability . 41
4.3 Higher-order Probability . 44
4.4 Continuous Kernels, Duality, GNS Construction 44

II Categorical Probability Theory 48

5 Generalized Probability Monads 49
5.1 Traditional Probability Monads . 50
5.2 Writer . 51
5.3 Multisets (Bags) . 51
5.4 Negative Probabilities . 51
5.5 Nondeterminism . 52
5.6 Logic Programming and Unification . 53
5.7 Name Generation . 55

6 CD- and Markov Categories 55
6.1 Definition . 55
6.2 Examples of Markov Categories . 58

3

6.2.1 Kleisli Categories . 58
6.2.2 Traditional Models of Probability . 58
6.2.3 Categories of Comonoids . 59
6.2.4 Aside on Semicartesian Theories . 59

6.3 Determinism . 60

7 Internal Language of CD Categories 62
7.1 Equational Theory . 66
7.2 Semantics . 69
7.3 Syntactic Category . 71

8 Concepts of Synthetic Probability 72
8.1 Independence . 72
8.2 Almost-sure Equality, Absolute Continuity and Supports 73
8.3 Representable Supports . 75
8.4 Conditionals . 76

9 Dataflow Axioms 78
9.1 Positivity . 78
9.2 Causality . 83

III The Beta-Bernoulli Process and Algebraic Effects 87

10 Introduction 87
10.1 Beta-Bernoulli . 87
10.2 Towards an Algebraic Theory . 89
10.3 Pólya’s Urn, Exchangeability and Abstraction 91
10.4 Algebraic Effects, Monads and Models of Synthetic Probability 93
10.5 Outline . 93

11 An Algebraic Presentation of the Beta-Bernoulli Process 94
11.1 An Algebraic Presentation of Finite Probability 94
11.2 A Parameterized Signature for Beta-Bernoulli 95
11.3 Axioms for Beta-Bernoulli . 96

12 A Complete Interpretation in Measure Theory 97
12.1 Background on Bernstein polynomials . 98
12.2 Normal Forms and Completeness . 99
12.3 Stone’s Normal Form for Rational Convex Sets 99
12.4 Normalization of ν-free Terms . 100
12.5 Normalization of Full Terms . 102
12.6 Proof of Completeness . 103

4

13 Extensionality and Syntactical Completeness 105
13.1 Extensionality for Closed Terms . 106
13.2 Extensionality for Ground Terms . 107
13.3 Relative Syntactical Completeness . 107
13.4 Verification of Pólya’s urn . 109

14 A Model of Synthetic Probability 109

15 Conclusion and Related Work 112

IV Compositional Semantics for Conditioning 114

16 Introduction 114
16.1 Outline . 119

17 A Language for Gaussian Probability 119
17.1 Recap of Gaussian Probability . 119
17.2 Types and Terms of the Gaussian language . 121
17.3 Operational Semantics . 122

18 Synthetic Foundations of Conditioning 123

19 Compositional Conditioning – The Cond Construction 127
19.1 Obs – Open Programs with Observations . 127
19.2 Cond – Contextual Equivalence of Open Programs 129
19.3 Laws for Conditioning . 134

20 Conditioning on Equality 140
20.1 Scoring . 142
20.2 Aside on Uninformative Priors and Frobenius Units 143

21 Equational Presentation of the Gaussian Language 146
21.1 Denotational Semantics . 146
21.2 Equational Theory . 148
21.3 Normal forms . 149

22 Context, Related Work and Outlook 152
22.1 Symbolic Disintegration and Paradoxes . 152
22.2 Other Directions . 154

V Name Generation and Probability on Function Spaces 155

23 Introduction 155
23.1 Outline . 157

5

24 Name Generation and the ν-Calculus 158
24.1 Operational Semantics and Observational Equivalence 159
24.2 Categorical Semantics . 162

25 Aside on Traditional Models of Name Generation 163
25.1 Nominal Sets . 164
25.2 Name Generation Monad . 166

26 Name Generation at Higher Types 170
26.1 The Privacy Equation . 171
26.2 Privacy contradicts Positivity . 172
26.3 Towards Probabilistic Semantics for Name Generation 173

27 Quasi-Borel spaces and Higher-Order Probability 175
27.1 Cartesian closure . 177
27.2 Probability on Quasi-Borel Spaces . 178
27.3 Quasi-Borel Spaces model the ν-Calculus . 179

28 The Privacy Equation in Qbs 180
28.1 Consequences . 184

29 Full Abstraction at First-Order Types 185
29.1 A Normal Form for Observational Equivalence 186
29.2 Proof of Full Abstraction . 190

30 Related Work and Context 194
30.1 Names in Computer Science and Statistics . 194
30.2 Compiler Optimization, Memory and Garbage Collection 195
30.3 Full Abstraction at Higher Types . 197
30.4 Other Models of Higher-Order Probability . 198
30.5 Outlook: A Categorical Theory of Information Leaking 199

VI Conclusion 205

VII Appendix 218

6

List of Symbols

We list the following nonstandard symbols and notations which are used in the thesis. When
notation is overloaded, we make sure that the meanings are either distinct (so that no confu-
sion is possible) or related in an evocative way (like in the various uses for ν or [x]).

Categorial notation
C, D categories (C means complex numbers in Section 4.4)
C(C, D) homset
V→ C Freyd category
[C, D] functor category
⊗ monoidal product, product distribution; product-σ-algebra
α, ρ, swap coherence isomorphisms in symmetric monoidal categories
f : C → D morphism
f : C ; D kernel, Kleisli map, morphism in Leak (Section 30.5) or Cond (Section 19.2)

Monads and Programming Languages
η unit of a monad
δ Dirac distribution; unit of a probability monad
st strength of a monad
[x] unit of a monad, return x
[φ] Iverson bracket (1 if φ else 0)
join join of a monad
CT Kleisli category of monad T
f+ Kleisli extension of f
let x ← u monadic sequencing (do-notation)
let x = u call-by-value sequencing
u[t/x] substitution of x by t
u[t!x] substitution of the unique free occurrence of x by t
ground non-function types like booleans, reals, names
first-order non-nested function types τ1 → . . .→ τn with τi ground
higher-order function types (first-order types are the simplest higher-order types!)

Specific categories
Set sets and functions
Fin finite sets and functions
Inj finite sets and injections
Meas measurable spaces and measurable maps
Sbs standard Borel spaces and measurable maps
SMeas standardly generated measurable spaces and measurable maps
Qbs quasi-Borel spaces and morphisms
SQbs standardly generated quasi-Borel spaces and morphisms
Top topological spaces and continuous maps
Pol Polish spaces and continuous maps
CH compact Hausdorff spaces and continuous maps
MIU commutative C*-algebras and multiplicative involution-preserving unital maps
PU commutative C*-algebras and positive unital maps

7

FinStoch finite sets and stochastic matrices
Stoch measurable spaces and probability kernels
BorelStoch standard Borel spaces and probability kernels
SfKer measurable spaces and s-finite kernels
Aff affine spaces Rn, n ∈N and affine-linear maps
Gauss affine spaces Rn, n ∈N and affine-linear maps with Gaussian noise
Nom nominal sets and equivariant functions
Atoms nominal sets which are finite coproducts of representables
FinFam finite family construction (free finite coproduct completion)

Specific notation
A, A#n nominal set of atoms/n distinct atoms
A ∗ B separated product of nominal sets; tuple type
B Borel σ-algebra on a topological space
Cdet deterministic subcategory
fX marginal of X
f |X conditional on X
〈 f , g〉 tupling of morphisms: (f ⊗ g) ◦ copy
f =µ g almost-sure equality with respect to µ

f � s restriction of function or relation f to domain s
R : s1 � s2 partial bijection (“span”) between finite sets
dom, cod domain and codomain of relations
col column space of a matrix
ε Frobenius multiplication, exact conditioning
νij fresh urn creation, Beta sample in Chapter III
ν random variable allocation, standard Gaussian sample in Chapter IV
ν atomless probability measure, fresh name generation in Chapter V
N natural numbers N = {0, 1, . . .}
N (µ, σ2) normal distribution with mean µ and variance σ2

N (~µ, Σ) multivariate normal distribution with mean ~µ and covariance matrix Σ
N (Σ) multivariate normal distribution with mean zero and covariance matrix Σ
+ coproduct, disjoint union of sets; addition
x +p y, x +i:j y probabilistic choice, abstract convex combination
x ?p y probabilistic choice by drawing from urn p
x ∨ y nondeterministic choice, semilattice join
⊕ disjoint union of sets of names or partial equivalence relations (Chapter V)∫

f (x)µ(dx) Lebesgue integral, Kleisli composition of probability monads (Section 5)
f∗µ pushforward distribution, functorial action of probability monads
ΣX induced or equipped σ-algebra on X
MX induced or equipped quasi-Borel structure on X
C set of continuous functions; countable-cocountable σ-algebra
I monoidal unit; abstract unit interval type in Chapter III
� absolute continuity
supp support in nominal sets; support of distributions
G Giry monad

8

R Radon monad
P probability monad
Pr(A) the probability of event A
P powerset
p(y|x) alternative notation for stochastic matrices; synthetic notation for p : X → Y
YX exponential object
2R the set of Borel subsets of R (this is an exponential object in Qbs)
⇒ logical implication, exponential object, natural transformation
X ∼ ν statistical notation for random variables and distributions
(=:=), (:=) exact conditioning in Chapter IV
S1, T unit circle (1-dimensional torus)
ω least infinite ordinal; operation symbols in universal algebra
Ω (weak) subobject classifier

9

1 Introduction

At a purely formal level, one could call probability
theory the study of measure spaces with total measure
one, but that would be like calling number theory the
study of strings of digits which terminate.

— TERENCE TAO, Topics in random matrix theory

What is probability really about? The central claim of this thesis is that this question can
be approached using ideas from programming language theory:

“Probabilistic Programming Languages are the internal languages of Categorical
Probability Theories.”

We begin by giving a nontechnical overview of the background of this claim:

Probabilistic programming is an emergent programming paradigm which can express sta-
tistical models through code. This is enabled by the addition of two capabilities to the language

(i) sampling draws random values from a target distribution

(ii) observing ties the random draws to empirical likelihood, letting the system learn from
data

While any programming language with access to a pseudorandom number generator
implements the sampling part, observing is more far-reaching in nature: It seeks to alter the
random choices made by the program to match the occurring observations, enabling the
program to learn from data. This has the semblance of running a simulation backwards,
inverting it and discovering which earlier choices led to later outcomes. In statistical termi-
nology, the forward (sampling) part of the program defines a generative model, which is then
conditioned on the observations. In terms of Bayes’ law

posterior ∝ prior · likelihood

the forward part defines a prior and the observations a likelihood. The outcome of running
the program is then a solution to the inference problem it poses, for example by sampling (ap-
proximately) from the posterior. Therefore, probabilistic programming is sometimes seen as
a flavor of machine learning called Bayesian machine learning.

The following example (adapted from [Goodman et al., 2016, Chapter 3]) in the proba-
bilistic programming language WebPPL defines a small medical decision model using two
possible diseases (A and B), which each may lead to developing a symptom. We model the
presence of each disease using biased coin flips (flip). The line condition(symptom == true)
conditions only on those cases where a symptom has been developed. The following pro-
gram thus describes the inference problem: Given that I have a symptom, what is the prob-
ability I have disease A?

10

Infer({method: ’enumerate’},

function () {

// two diseases and their baseline probabilities
var diseaseA = flip(0.01)

var diseaseB = flip(0.2)

// probabilities of developing a symptom
var symptom = (diseaseA && flip(0.8)) || (diseaseB && flip(0.5))

condition(symptom == true)

return diseaseA

});

The call Infer({method: ’enumerate’}, ...) invokes a general-purpose inference algo-
rithm to compute the desired posterior described by the probabilistic program – in this case,
exhaustive enumeration of all possibilities. For more complex statistical models, exhaustive
search would soon be intractable and more sophisticated algorithms such as particle filters
and Monte Carlo simulation can be used. To be precise, every probabilistic programming
system comprises two aspects:

(i) a declarative language for describing inference problems

(ii) a set of general-purpose inference algorithms for solving these problems

The power of the declarative approach is apparent: Code is an excellent way to develop
and communicate complex models. It is highly modular, compositional and we have a host
of software engineering best practices available to help organize it. In using an expressive
general-purpose programming language, we can leverage pre-existing libraries or invoke
complicated simulations that would be impossible to write down in a statistical model by
hand. Probabilistic programming enables everyone with basic scientific coding skill to write
flexible statistical models. Users can experiment with their models and even try to run infer-
ence on them. That being said, generating high-performance inference code is still far from
automatic. There is No Free Lunch in machine learning, and no set of general-purpose in-
ference algorithms will address every situation optimally. However, probabilistic program-
ming still helps decouple the domain expert writing the model from a statistician dedicated
to running efficient inference.

This explains the crucial role that programming language theory holds to probabilistic
programming: One can often replace a probabilistic program by an equivalent one where
inference runs more efficiently. For example, we can predict the unknown bias p of a coin
which came up heads once using rejection sampling

Infer({method: ’rejection’},

function () {

var p = uniform(0, 1)

11

var x = flip(p)

condition(x == true) // Reject current execution trace if false
return p

})

The same program is more efficiently implemented using importance sampling, where score(p)
multiplies the likelihood p to the current execution trace

Infer({method: ’importance’},

function () {

var p = uniform(0, 1)

score(p) // always accept, but weight the current execution trace
return p

})

Verifying such program transformations is subtle. Studying the correctness of inference algo-
rithms necessarily combines techniques from programming language theory and statistics.

Denotational semantics is an important tool to study meaning-preserving transformations
of programs. We associate to every program a mathematical object, its denotation. As prob-
abilistic programs concern random values, their denotations will use the mathematical lan-
guage of probability theory. For example, if normal(µ, σ2) samples from a normal (Gaus-
sian) distribution with mean µ and variance σ2, then the program normal(0, 1) + normal(0,1)
differs from normal(0, 2) in that it samples twice instead of once. Yet we consider those pro-
grams equivalent, because mathematically, the variance of independent random variables is
additive and so both programs denote the same probability distribution over the real num-
bers. Note that to give a proper mathematical account of such programs, we’re required to
use a mathematical axiomatization of probability such as Kolmogorov’s measure-theoretic
axioms.

The idea of denotational semantics is to understand programs in terms of probability
theory. We are interested to go the other way, and propose to understand probability theory
though code:

Synthetic Probability Theory: We contend that statistical modelling assumptions corre-
spond to properties of programs, and theorems of probability theory to properties of the
language. For example, in measure theory, random variables X, Y are independent if for all
measurable sets A, B we have

Pr(X ∈ A ∧Y ∈ B) = Pr(X ∈ A) · Pr(Y ∈ B).

Every programming language comes with a natural syntactic notion of independence: The
outputs of a program joint returning pairs (x,y) are deemed independent if they can be
obtained by subprograms px, py as

joint ≈ (px,py) (Ind)

12

This is the case if and only if px and py can be obtained as the marginals

px ≈ (var (x,y) = joint; x) py ≈ (var (x,y) = joint; y)

These equations are examples of synthetic definitions: We have captured a concept from prob-
ability purely in terms of a dataflow property of a program. Such a definition makes sense
wherever our language makes sense, even without reference to measure theory. When inter-
preted in the denotational semantics, this definition recovers the measure-theoretic meaning
of independence.

Some dataflow properties are always expected of random sampling [Staton, 2017]: Firstly,
the order of sampling does not matter, that is independent lines of code can be reordered as(

var x = u

var y = v

)
≈
(
var y = v

var x = u

)
(Comm)

whenever x does not occur freely in v and y not in u. Secondly, unused samples can be
discarded, i.e.

(var x = u; v) ≈ v (Disc)

whenever x is not free in v. These properties called commutativity and discardability are ex-
pected to hold in every purely probabilistic language which has no effects other than random
sampling. Note that commutativity corresponds to Fubini’s theorem in measure theory (see
(21)). Probabilistic programs with observations are still commutative but observe statements
are no longer discardable.

Commutativity and discardability are generally invalid in stateful programs. For exam-
ple, the following lines using JAVASCRIPTs post-increment operator i++,

var x = i++

var y = i

cannot be interchanged. Many languages provide a pseudorandom number generator (PRNG)
to implement sampling. Such generators are stateful, because they maintain and update a
random seed, but their interface does verify the commutativity and discardability equations
up to observable statistics. For this, it is crucial that the random seed remains abstract and
cannot be inspected by the client program.

In Chapter III, we will meet Pólya’s urn, which is a stateful urn whose observable be-
havior nonetheless satisfies (Comm) and (Disc) because of a statistical property called ex-
changeability. Again, it is crucial that the contents of the urn cannot be inspected, which we
enforce via abstract types. Name generation (Chapter V) is another example of a process
with a commonly stateful implementation which we can interpret using pure probability.

Because of central importance of commutativity and discardability, we will take these as
the minimal requirement for any system which we can analyze in probabilistic terms:

Soft Definition 1.0 A synthetic model of probability is any structure where we can compose
computations in sequence, in parallel, as well as copy and discard data. Composition must
be commutative and discardable.

13

This definition is purely concerned with the abstract structure of probabilistic computation.
For that reason, we will use the terms structural and synthetic probability theory interchange-
ably.

In Chapter II, we will meet precise instances of this soft definition, principally Markov
categories and commutative monads. A large number of probabilistic and statistical con-
cepts can be defined inside this structural language alone, with no reference to measure
theory at all. Among those are determinism, (conditional) independence, support, almost-
sure equality, conditional probability, sufficiency of statistics, zero-one laws and De Finetti’s
theorem. Such a formulation offers a variety of advantages:

(i) it is high-level and intuitive

(ii) it is agnostic to mathematical foundations

(iii) it reduces the redundant difficulties of expressing ourselves in both code and statistics

(iv) it lends itself to an analysis with tools of programming language theory, and plays well
with program transformation techniques discussed before

(v) it opens probabilistic reasoning up to generalizations

The point about foundations needs elaboration: So far we’ve only mentioned a single
mathematical formalism of probability – measure theory. In fact, there are plenty of different
models of probability theory, with measure theory being one among those models. Synthetic
probability theory is the right language to compare the properties of these models. A pro-
gramming language then has an implementation in measure theory, much like an ordinary
language compiles to assembly. Synthetic reasoning abstracts away from this implementa-
tion dependence, leading to greater conceptual clarity.

Our soft definition is general enough that it applies to a range of phenomena beyond
probability and statistics in a narrow sense. Examples of these are computational effects like
nondeterminism, logic programming, name generation and various forms of generativity,
but also exotic notions such as negative probability. In this thesis, we consider all these phe-
nomena as generalized probability theories, and analyze them in the unifying framework of
synthetic probability theory.

Category theory is the language in which the soft definition is most naturally formalized,
to the extent that we will often use synthetic probability and categorical probability interchange-
ably. The tight relation between programming languages, type theories and categories is
well known in theoretical computer science. Adapting John Bell’s aphorism,

“a category may be thought of as a type theory shorn of its syntax.” [Bell, 2012]

we contend that a categorical model of probability theory is a probabilistic programming lan-
guage shorn of its syntax. In the style of the Curry-Howard correspondence for λ-calculus,
we posit the relation

14

λ-calculus
cartesian closed categories

=
probabilistic programming languages

categorical probability theories

Every model of probability has an internal language, which is a probabilistic programming
language, and every probabilistic programming language in turn defines its own model of
probability by its syntactic category:

Probabilistic Programming Categorical Probability

Syntactic Category

Internal Language

1.1 Contributions

The objective of this thesis is to demonstrate the value of exploring categorical models and
synthetic reasoning for probabilistic programming, substantiating the main claim from the
introduction. Our aims are the following

(i) To argue for synthetic probability theory as a foundation of probabilistic programming
(Section 7), as well as a shared language for a wider scope of probability-like phenom-
ena like nondeterminism, unification, name generation or generativity (Section 5).

(ii) To further the understanding of synthetic probability theory itself, by proving novel
theorems and characterizations (Section 9)

(iii) To present techniques for the construction of new categorical models, such as second-
order algebra (Section 3.7), the Cond construction (Section 19.2) and the Leak construc-
tion (Section 30.5)

While Fritz [2020] argues for the general merits of synthetic reasoning, each of the main
chapters III-V of this thesis will center around one particular categorical model, which each
exemplifies a characteristic strength of such reasoning:

Simplicity of models (Chapter III) Simple things should be simple. Yet, formally, defining
even the simplest continuous probability distributions like Beta or Gaussian requires heavy
machinery like Borel measurability and integration. Synthetic probability allows us to con-
struct minimalistic categories which capture such distributions purely combinatorially. We
give one such axiomatization for the relationship between the Beta and Bernoulli distribu-
tions, and formulate their conjugate-prior relationship completely algebraically.

Well-behavedness of properties (Chapter IV) Specialized synthetic models tend to be
more well-behaved than general-purpose ones. Notions like support or conditioning are ill-
behaved in general measure-theoretic probability or require arbitrary choices. In restricted
settings like finite or Gaussian probability, statisticians work with particular constructions

15

that get rid of these choices. By considering these construction in the appropriate categorical
models, we see that they follow elegant universal properties. This tackles the problem of
“well-behaved disintegrations” posed by Shan and Ramsey [2017]. We use this as a starting
point for developing a theory of Bayesian inference purely synthetically, addressing phe-
nomena like Borel’s paradox in a type-theoretic way. This allows us to define a specialized
probabilistic programming language for Gaussian processes with a powerful notion of con-
ditioning. This is an example of how denotational semantics can actually guide language
design. This work can be seen as the semantic side of the symbolic disintegration techniques
of Narayanan and Shan [2019]; Shan and Ramsey [2017].

Generality of constructions (Chapter V) Synthetic models may model constructions which
lie outside the scope of conventional, measure-theoretic probability! Higher-order functions
are commonplace in programming, yet there is no satisfactory account of random functions
in measure theory – the category of measurable spaces is not cartesian closed. One can
remedy this by passing to the category of quasi-Borel spaces, which conservatively extends
standard Borel probability with function spaces.

This thesis contains one of the first detailed investigations into random higher-order
functions. An important result is that a random function R→ 2 like

let a = normal() in λx.(x == a)

is indistinguishable from the function λy.false, even though the second function is always
constant and the first one never is. For a more involved example, the random transposition
function R→ R

let a = normal() in let b = normal() in λx.if x = a then b else if x = b then a else x

can be proved semantically equal to the identity function.
This behavior is reminiscent of identities for name generation: The values of a,b are hid-

den or private inside the body of the functions. It turns out that the probability theory on
function spaces intrinsically features such subtle effects as privacy and information hiding.
The language of categorical probability theory offers the right tool to make this connection
precise. We develop a probabilistic model of name generation and show that two name gen-
erating functions behave the same if and only if the corresponding random functions do.

We hope that different audiences may take away different things from this thesis

To a computer scientist there is a powerful interplay between languages and their semantic
models. The construction of models furthers the understanding of the language and
lets one justify meaning-preserving transformations such as compiler optimizations.
On the other hand, understanding a model may inspire the addition of new features to
the language like the exact conditioning operator in Chapter IV. Synthetic probability
is a new perspective on statistics with tools and ideas from programming language
theory. Likewise, it offers new perspectives on a variety of generalized probabilistic
effects.

16

To a mathematician the interest lies in the models themselves: We are working with non-
trivial structures from set theory (Section 25), linear algebra (Section 21), functional
analysis (Section 4.4) and descriptive set theory (Section 28). The categorical formal-
ism gives an alternative, high-level picture of working with these structures. String
diagrams and the various internal languages from Section 3.1 serve as elementary cal-
culi for reasoning about these structures in an intuitive way, without loss of precision.

To a statistician probabilistic programming may be a powerful tool for the creation of mod-
ular large-scale models. Our work also lets us see familiar structures (statistical mod-
els, Bayesian networks) in another light, such as string diagrams and probabilistic
programs. It also lets us transfer statistical thinking from probability to other com-
putational phenomena, such as generating a fresh name or a logic variable. This is
particularly interesting when unifying these effects, for example choosing fresh names
for clusters in a Dirichlet process (Section 30.1).

1.2 Technical Summary

We now give an outline of the structure of this thesis and its relation with previously pub-
lished work of the author. The thesis builds on material the author developed in four articles
with various coauthors. It presents this work in its most developed form and within the uni-
fying context of synthetic probability theory. We generally won’t cite these articles explicitly,
but will make clear their relation to the different parts of the thesis.

Chapters I–II establish the common theoretical background for the main chapters III–V,
which each focus on a particular model and application of synthetic probability theory. The
latter are largely independent and can be read in any order, though they exhibit various
interconnections:

I

II

III IV V

We now briefly summarize the contents of each chapter and refer to the beginning of
each chapter for a less technical introduction.

Chapter I: Background As this thesis makes connections between various areas of maths
and computer science, we begin by compiling an overview over the assumed background.
We will review probabilistic programming systems (Section 2), general semantical and cat-
egorical notions (Section 3) and classical models of probability theory (Section 4). We intro-
duce the various internal languages we will employ (Moggi’s monadic metalanguage, com-
putational λ-calculus, fine-grained call-by-value and string diagrams), establishing shared
notation for the later chapters. Chapter I is purely expository and contains no novel results.
It may be skipped by the knowledgeable reader or consulted later.

17

Chapter II: Categorical Probability Theory We introduce the two main flavors of categor-
ical probability theory that we will be using throughout the thesis:

(i) generalized probability monads due to Kock [2011]

(ii) CD and Markov categories due to Cho and Jacobs [2019]; Fritz [2020]

We define the internal language of CD categories in Section 7, which is a ground compu-
tational λ-calculus with an appealing equational theory, and argue that this is the proto-
typical probabilistic programming language. We then revisit the relevant notions from syn-
thetic probability, such as determinism, independence, almost sure equality and conditionals
(Section 8). We expand on these definitions and prove novel characterizations, such as the
characterization of representable supports in Section 8.3 and the implications between the
dataflow axioms of Section 9. These results are based on an upcoming article with Tobias
Fritz, Tomáš Gonda, Nicholas Gauguin Houghton-Larsen and Paolo Perrone.

Chapter III: The Beta-Bernoulli Process and Algebraic Effects We give an algebraic pre-
sentation of the Beta-Bernoulli process and prove various normalization theorems about
the theory. This allows us to make a formal connection between a stateful implementa-
tion (Polya’s urn) and the original stateless process, in the spirit of De Finetti’s theorem. We
obtain a purely combinatorial model of synthetic probability which encodes the Beta and
Bernoulli distributions. This chapter is based on joint work with Sam Staton, Hongseok
Yang, Nathanael Ackerman, Cameron Freer and Daniel Roy [Staton et al., 2018].

Chapter IV: Compositional Semantics for Conditioning We introduce a probabilistic pro-
gramming language with Gaussian random variables and a powerful exact conditioning
construct (=:=). We analyze the equational properties of this operator and generalize them by
developing a general theory of exact conditioning in Markov categories C. The challenge is
now to internalize conditioning, which is a meta-operation on C, to a morphism in a larger
category, thereby making conditioning compositional. We achieve this by introducing the
concept of conditioning channels, which form a category Cond(C) with good formal proper-
ties, in Section 19. We then return to the Gaussian language to give an algebraic presentation
of contextual equivalence similar to Beta-Bernoulli. This chapter is based on joint work with
Sam Staton [Stein and Staton, 2021]. An implementation of the Gaussian language is avail-
able under [Stein, 2021].

Chapter V: Name Generation and Probability on Function Spaces We view the ν-calculus
[Pitts and Stark, 1993], a λ-calculus for fresh name generation, as a minimalistic probabilistic
language which only knows perfect correlation and independence, and revisit nominal sets,
a traditional model of name generation, from this probabilistic viewpoint (Section 25). We
recognize that the phenomena of privacy and information hiding, which are crucial to name
generation, violate the dataflow axioms of Section 9, making name generation the canonical
example of a non-positive probabilistic effect (Section 26).

We then give a novel semantic model of the ν-calculus by interpreting fresh name genera-
tion as random sampling, unifying the two effects (Section 26.3). This requires us to consider
cartesian-closed models of probability. We review quasi-Borel spaces [Heunen et al., 2017],

18

and prove our main theorem, that is probabilistic semantics is fully abstract up to first-order
function types (Section 29). This requires an in-depth analysis of quasi-Borel function spaces,
and tools ranging from logical relations over normal forms to descriptive set theory. Because
of the full abstraction result, the exotic dataflow properties of name generation carry over
to quasi-Borel spaces, with profound impact on the existence of conditional probabilities.
Our result generalizes; ideas and intuitions of name generation automatically apply in ev-
ery higher-order probabilistic programming language. This chapter is based on joint work
with Marcin Sabok, Sam Staton and Michael Wolman [Sabok et al., 2021].

19

Chapter I

Background
This chapter contains a brief exposition of background material for the thesis. We begin
with a brief historical overview over probabilistic programming languages (Section 2) and
establish examples and terminology around them. The remaining sections are more tech-
nical collections of theorems and notations. In Section 3, we review the semantics of pro-
gramming languages, in particular denotational semantics. We recall the relevant flavors
of internal languages (monadic metalanguage, computational λ-calculus and fine-grained
call-by-value) and their categorical models, as well as the framework of algebraic effects.
In Section 4.2, we review the traditional foundations of probability theory through measure
theory. We emphasize the importance of probability monads, foreshadowing their general-
ization in Section 5.

2 Overview of Probabilistic Programming

One of the pioneers of the semantic study of probabilistic programs was Kozen [1981]. The
subject has received renewed interest as a principled and explainable form of ´Bayesian’ ma-
chine learning. For an introduction to the subject, we refer to [van de Meent et al., 2018; Rain-
forth, 2017]. For a fuller history, see [Panangaden, 2016]. An interactive textbook with moti-
vations from neuroscience and cognition is available under [Goodman et al., 2016; Goodman
and Stuhlmüller, 2014]. We’ll now attempt a rough taxonomy of common probabilistic lan-
guages, which is by no means exhaustive:

Every probabilistic programming system comprises two parts: A declarative language to
specify a statistical inference problem, and a set of inference algorithms to ‘run’ the program,
thereby (approximately) solving the inference problem. General classes inference algorithms
are

Monte-Carlo simulation including rejection sampling and importance sampling. More so-
phisticated methods are Markov chain Monte-Carlo methods (MCMC) such as Metropolis-
Hastings or Hamiltonian Monte Carlo (HMC).

Optimization techniques such as variational inference parameterize the posterior as a pro-
gram whose parameters are then optimized to fit the true posterior

Exact inference In restricted situations, the inference problem can be solved exactly by sym-
bolic inference techniques or even exhaustive enumeration of all possibilities.

In this thesis, we will mainly focus on the declarative language rather than the infer-
ence algorithm (though Chapters III and IV contain symbolic inference techniques). Yet, the
choice of an inference algorithm dictates a crucial tradeoff in the language design: Highly
specialized inference algorithms require restricted languages, while more general-purpose,
Turing-complete languages are often left with generic inference procedures.

20

Classical examples of restricted modelling languages are WINBUGS [Lunn et al., 2000]
and JAGS [Plummer, 2003] based on Gibbs sampling, or the more modern STAN [Carpen-
ter et al., 2017] which features Hamiltonian Monte Carlo simulation. The requirement of
gradient information for HMC poses an interesting challenge to language design, combin-
ing probabilistic and differentiable programming. Another specialized language is BLOG

[Russell and Milch, 2006] for modelling unknown classes of objects.
On the side of general-purpose languages, we mention WEBPPL [Goodman and Stuhlmüller,

2014] based on purely-functional JavaScript, ANGLICAN [Tolpin et al., 2016] and its precur-
sor CHURCH [Goodman et al., 2008] based on Clojure/Scheme and MONAD-BAYES [Ścibior
et al., 2017], which is a Haskell library. A recent trend is programmable inference which extends
a general-purpose probabilistic language with fine-grained facilities to customize the infer-
ence process, such as PYRO [Bingham et al., 2018] (Python) and GEN [Cusumano-Towner
et al., 2019] (Julia).

Another difference between probabilistic languages is how the dependence on data is
expressed. We extensively discuss the distinction between soft conditioning (scoring) and
exact conditioning in Chapter IV. We notice that HAKARU [Narayanan et al., 2016] and BIRCH

[Murray and Schön, 2018] employ symbolic inference techniques, while INFER.NET [Minka
et al., 2018] allows exact conditioning together with approximate inference.

For the purposes of semantics, our reference general-purpose probabilistic language with
scoring is taken from [Staton, 2017]. Its types and terms are given by

A ::= R |P(A) | 1 | A× A | ∑
i∈I

Ai t ::= x | [i, t] | case t of{[i, x]⇒ t}i∈I

| () | (t, t) |πi(t)

| return(t) | let x = t in t

| f (t) | sample(t) | score(t)

with constructs for sampling and scoring. There are two judgements Γ `d t : A for de-
terministic and Γ `p t : A for probabilistic terms, following the fine-grained call-by-value
paradigm (Section 3.4). The language has fully-definable denotational semantics in s-finite
kernels (Section 4.2) and can in fact be seen as the internal language of that category (Sec-
tion 3.4). We can also extend the language with higher-order functions. Giving denotational
semantics to random higher-order functions is subtle, but the category of quasi-Borel spaces
(Section 27) is a natural semantic domain for this language [Staton et al., 2016; Heunen et al.,
2017].

3 Semantics of Programming Languages

In this section, we will review general techniques in the semantics of programming lan-
guages. We will particularly focus on categorical denotational semantics and its interplay
with various internal languages (Section 3.1), string diagrams (Section 3.5) and discuss the
role of algebraic theories for the presentation of programming languages (Section 3.6).

The meaning of programs is traditionally analyzed from the following viewpoints [Moggi,
1991]

21

Operational semantics describes how programs (closed terms) reduce to values. This ap-
proach most closely mirrors the execution of a program on a machine, though effects
like nondeterminism or random choice may occur.

Denotational semantics associates to every term t a mathematical object JtK, its denotation.
Denotation is typically an invariant of reduction, though this requires care when the
reduction relation is nondeterministic.

Axiomatic semantics specifies a set of axioms and deduction rules for establishing proper-
ties of programs. For example, program equations may axiomatize when two terms are
considered equal and may be interchanged.

Operational semantics induces a notion of contextual equivalence on open programs: Two
terms are deemed contextually equivalent if they can be interchanged in every closed con-
text. Contextual equivalence is often difficult to work with directly, because of the quan-
tification over all contexts. Denotational semantics or derivable program equations define
a stronger notion of equivalence, which may be easier to work with: If two terms can be
shown to be denotationally or derivably equal, they must be contextually equivalent. The
converse is known as full abstraction: Every two terms which are contextually equivalent
can be proven denotationally or derivably equal. This means that the chosen mathematical
model or axiomatic system has precisely captured the dynamics of the language.

We define a simple operational semantics for Gaussian probability in Section 17.3 and
make use of the operational semantics of name generation in Chapter V. We will not re-
quire operational considerations of general-purpose probabilistic languages but point to
[Borgström et al., 2016; Staton et al., 2016] as a reference.

Some languages have a single, intended denotational model. For others, one specifies
a class of possible models. This blends axiomatic and denotational semantics, because two
terms are derivably equal if and only if they have the same denotation in all possible models.

3.1 Categorical Semantics and Internal Languages

An elegant method of constructing denotational semantics is by interpreting the language
as the internal language of a category C with structure. Types A of the language are inter-
preted as objects JAK of C, and terms-in-context Γ ` t : A are interpreted as a morphism
JtK : JΓK→ JAK in C, in a way that composition of morphisms corresponds to substitution in
the language of some sort. Constructs of the language then correspond to structure on the
category, and reduction rules and program equations translate to properties which the cate-
gory satisfies. Famously, the simply-typed λ-calculus can be interpreted in cartesian-closed
categories this way.

Given a category C, we can form a language where all objects and morphisms are avail-
able in the language as types and terms. We can then reason in the language instead of in
the mathematical structure C. In this way, programming languages naturally give rise to
elementary1 calculi or metalanguages for mathematical structures. The advantages are mani-
fold:

1as in “of elements”, i.e. the sense of Goldblatt, not Sherlock Holmes

22

(i) the internal language hides nonessential bookkeeping like coherence isomorphisms
from view

(ii) we can harness elementary intuitions

(iii) we make mathematical structure amenable to programming language techniques

Objects in a category do not have elements the way a set does. Yet internal languages
let us pretend they do in a meaningful way: For example, the elementary phrasing of the
associativity axiom

a : X, b : X, c : X ` m(m(a, b), c) = m(a, m(b, c)) (1)

is equivalent in the internal language of a cartesian category (a category with finite products)
to the statement that the following diagram commutes

X× (X× X) X× X X

(X× X)× X X× X X

〈〈π1,π1π2〉,π2π2〉

idX×m m

m×idX m

Variables aren’t taken to actually represent elements, but act as convenient placeholders
for the dataflow described by the program. In our analysis of probabilistic programming,
the same fate will befall the notion of sample in statistics. Samples are not necessarily actu-
ally drawn, instead they are convenient indicators for the dataflow obtained by composing
probabilistic computation. In the diagrammatic picture of Markov categories (Section 6),
samples are merely wires.

We’ll now introduce several important styles of internal language that will be used through-
out the thesis.

3.2 Monadic Metalanguage

Moggi’s monadic metalanguage [Moggi, 1991] is the internal language of a category together
with a strong monad T. It pioneered the familiar way Haskell treats effectful computation, by
wrapping it in a monad. We’ll thus say effects here are explicit, tracked by the type system.

The types and terms of the metalanguage are

A ::= τ | T(A) | 1 | A× A

t ::= x | () | (t, t) |πi(t) | f (t) | [t] | let x ← t in t i ∈ {1, 2}

where τ stands for base types and f stands for function symbols of given arity A → B. The
language extends the usual constructions of a cartesian category (tuples, projections) with
the return statement [t] and monadic sequencing let x ← e in t. The typing rules read

Γ ` x : A
(x : A ∈ Γ) Γ ` t : A

Γ ` [t] : TA
Γ ` e : TA Γ, x : A ` t : TB

Γ ` let x ← e in t : TB

23

and the following equations are valid

let x ← t in [x] = t (M1)

let x ← [u] in t = t[u/x] (M2)

let x2 ← (let x1 ← e1 in e2) in t = let x1 ← e1 in let x2 ← e2 in t (M3)

where in (M3) we assume x1 /∈ fv(t), x2 /∈ fv(e1).
Recall that a monad is an endofunctor T : C → C equipped with natural transforma-

tions2 η : 1 ⇒ T and join : TT ⇒ T satisfying conditions [MacLane, 1971]. For a morphism
f : X → TY, we denote by f+ = join ◦ T f : TX → TY its Kleisli extension (or bind in
functional programming terminology).

Now, assume that C has products and recall that a strength for T is a natural transforma-
tion with components

stX,Y : X× TY → T(X×Y)

again satisfying conditions [Kock, 1972]. A strong monad is a monad equipped with such a
strength. Fixing an interpretation of base types JXK as objects of C, we let JTAK = T(JAK)
and define for contexts Γ = (x1 : A1, . . . , xn : An) that

JΓK = JA1K× . . .× JAnK.

For any term Γ ` t : A in the metalanguage, an interpretation JtK : JΓK → JAK is defined
using the cartesian structure of C and the following monadic operations

J[t]K : JΓK
JtK−→ JAK

ηJAK−−→ JTAK

Jlet x ← e in tK : JΓK
〈idJΓK,JeK〉
−−−−−→ JΓK× TJAK

stJΓK,JAK−−−−→ T(JΓK× JAK)
TJtK−−→ TTJBK

joinJBK−−−→ JTBK

The equations (M1)-(M3) morally correspond to the monad axioms of unitality and associa-
tivity.

When used as the internal language of a category with a strong monad (C, T), we add
basic types for all objects of C and function symbols for all morphisms in C. If C is cartesian
closed, we employ the usual λ-syntax

Γ, x : A ` t : B
Γ ` λx.t : A→ B

Γ ` f : A→ B Γ ` t : A
Γ ` f t : B

for function types A→ B which are interpreted as the function spaces of C

JA→ BK = JAK⇒ JBK

Lastly, we note that one can extend let syntax to work with algebras of a monad. If the inter-
pretation of a type B has a dedicated T-algebra structure (JBK, β), we allow the judgement

Γ ` e : TA Γ, x : A ` t : B
Γ ` let x ← e in t : B

2we write join because µ already heavily overloaded in this thesis.

24

whose interpretation is

JΓK
〈idJΓK,JeK〉
−−−−−→ JΓK× TJAK

stJΓK,JAK−−−−→ T(JΓK× JAK)
TJtK−−→ TJBK

β−→ JBK (2)

This subsumes the previous monadic sequencing using the canonical T-algebra structure
(TJAK, joinJAK) on JTAK. Laws (M2)-(M3) remain valid as per the algebra laws.

3.3 Computational λ-calculus

The monadic metalanguage is a language of values where effectful sequencing is explicitly
invoked through monadic let, and effects are tracked in the type system by the monad T.
We contrast this with the computational λ-calculus (λc-calculus) of Moggi [1989], where
computational effects are implicit in the type system and may happen at any point. This is
reminiscent of the ML family of functional programming languages. Care is needed to reflect
the call-by-value strategy of the language in its theory, by distinguishing computations from
values and fixing an evaluation order. The types and terms are

A ::= τ | 1 | A× A

t ::= x | () | (t, t) |πi(t) | f (t) | let x = t in t

where the let-binding now has the type

Γ ` e : A Γ, x : A ` t : B
Γ ` let x = e in t : B

This is a language of computations. Familiar equations hold, for example

(let x = e in x) = e

(let x = x in e) = e

(let x2 = (let x1 = e1 in e2) in e) = (let x1 = e1 in let x2 = e2 in e)

where x1 /∈ fv(e), x2 /∈ fv(e1). On the other hand, unlike in the monadic metalanguage, λc-
programs are written in direct style that allows arbitrary nesting of effectful computations.
This makes the equational theory more complex and we need to add explicit sequencing
information such as

(s, t) = (let x = s in let y = t in (x, y))

as well as defining a special value predicate V to capture substitution as in

(let x = V in u) = u[V/x]

For more detail, see Moggi [1989] and our simpler presentation of the ground commutative
fragment of λC in Section 7.

A convenient approach to studying the computational λ-calculus is translating it into the
monadic metalanguage. Following Moggi [1991], we recursively define for every Γ ` t : A a

25

translation Γ◦ : t◦ : T(A◦) by

x◦ = [x] ()◦ = [()]

(s, t)◦ = let x ← s◦ in let y ← t◦ in [(s, t)] (πi(t))◦ = let x ← t◦ in [πi(x)]

(f (t))◦ = let x ← t◦ in f (x) (let x = e in t)◦ = let x ← e◦ in t◦

We notice how that translation makes all sequencing information explicit. Care is needed
when adding λ-abstraction to the language. It is important that effectful call-by-value func-
tion spaces are translated as

(A→ B)◦ = A◦ → T(B◦).

One consequence is that while currying is valid in the monadic metalanguage, i.e.

(A→ B→ C) ∼= A× B→ C

the same does not hold in the computational λ-calculus. First-order (i.e. non-nested) function
types thus already encode considerable amounts of complexity.

3.4 Fine-grained call-by-value

A different analysis of the computational λ-calculus has been presented in [Levy et al., 2003].
It is particularly appealing for the semantics of ground programs because it avoids all men-
tion of a monad. Being a dedicated call-by-value analysis, it formulates two separate judge-
ments `v for values and `c for computations. We extend the λc-calculus by a term return t
and have judgements

Γ `v x : A
(x : A ∈ Γ)

Γ `v t : A
Γ `c return t : A

Γ `c e : A Γ, x : A `c t : B
Γ `c let x = e in t : B

That is, return t promotes a value term t to a computation, and let sequences computa-
tions together. Fine-grained call-by-value is the internal language of Freyd categories, which
comprise a category V of values, a category C of computations and an identity-on-objects
functor J : V→ C promoting value morphisms to computations. The computation category
C comes equipped with the following structure:

Recall that a symmetric premonoidal category [Power and Robinson, 1997] is a category C

equipped with the following structure

• an object I called unit

• a tensor construction on objects (A, B) 7→ A⊗ B

• for every object A, an endofunctor A o (−) sending B to A⊗ B

• for every object A, an endofunctor (−)n A sending B to B⊗ A

• isomorphisms

ρA : A⊗ I ∼= A

αA,B,C : (A⊗ B)⊗ C ∼= A⊗ (B⊗ C)

swapA,B :A⊗ B ∼= B⊗ A

26

satisfying coherence conditions. In such a category, we can compose morphisms f : A → B
and f ′ : A′ → B′ in parallel as

(B o f ′) ◦ (f n A′) : A⊗ A′ → B⊗ B′ (3)

but a fixed order of sequencing needs to be chosen. This way, premonoidal categories for-
malize the evaluation order necessary for noncommutative effects. In particular (3) needs
not be equal to the composite (f n B′) ◦ (A o f ′). A morphism f : A → B is called central if
for every other f ′ : A′ → B′, the order of parallel composition is unambiguous, i.e.

(B o f ′) ◦ (f n A′) = (f n B′) ◦ (A o f ′)

(f ′ n B) ◦ (A′ o f) = (B′ o f) ◦ (f ′ n A)

If every morphism is central, then C becomes a symmetric monoidal category (Section 3.5)
and we write f ⊗ g for the unambiguous parallel composite of morphisms. The construction
⊗ : C×C→ C is then a bifunctor, that is it satisfies the so-called interchange law

(g⊗ g′) ◦ (f ⊗ f ′) = (g ◦ f)⊗ (g′ ◦ f ′) (4)

Because synthetic probability is only concerned with commutative effects, we won’t be need-
ing premonoidal categories much except to show that they are monoidal. We have decided
to recall the full definition because of various connections to the programming language
literature:

Definition 3.1 (Levy et al. [2003, 4.1]) A Freyd category consists of a cartesian category V, a
symmetric premonoidal category C and an identity-on-objects functor J : V → C which
preserves strict symmetric premonoidal structure and whose image is central.

Freyd categories subsume the earlier monadic models by the following construction:

Proposition 3.2 (Power and Robinson [1997, 3.5]) If V is cartesian and T a strong monad on
V, then the Kleisli category VT is symmetric premonoidal and the functor J : V → VT is a Freyd
category.

Not every Freyd arises as a Kleisli category. A relevant example for probabilistic com-
putation is the Freyd category Meas → SfKer of measurable maps and s-finite kernels, as
defined in Definition 4.8. This construction is not known to arise from a monad on Meas.
The internal language of this Freyd category is a fragment of the reference probabilistic lan-
guage from Section 2, and recovers the semantics given in [Staton, 2017].

We say that a Freyd category is commutative if every morphism in C is central. A Kleisli
category VT is commutative as a Freyd category if and only if the monad T is commutative
in the sense of Definition 3.3. Commutative Freyd categories are very close to one of the cen-
tral notions of this thesis, CD categories. We’ll discuss their precise differences in Section 6.3.
It should not come as a surprise that the internal language of CD categories (Section 7) re-
sembles fine-grained call-by-value. Due to commutativity, its theory can be simplified and
presented very concisely.

27

3.5 Graphical Language: String Diagrams

Let (C, I,⊗) be a symmetric monoidal category [MacLane, 1971]. The tensor differs from a
product in that information cannot be copied or discarded at will. We call C cartesian if ⊗ is
a categorical product, and semicartesian if I is a terminal object.

The interchange law (4) in monoidal categories makes them amenable to a different type
of internal language: The graphical calculus of string diagrams. Here, morphisms are drawn
as boxes in the plane, and wires are labeled with objects. In our convention, ‘time flows
upwards’. For example, the associativity equation (1) for a morphism m : X ⊗ X → X uses
its variables linearly and can be interpreted in any monoidal category as the string diagram

m

m

m

m

=

X X X X X X

X X

Commutativity requires us to use the swap isomorphism, which is depicted as crossing
wires.

m m

X X X X

X X

=

The appeal of string diagrams is that all coherence isomorphisms are hidden in the ge-
ometry of the plane: One can show that a transformation of string diagrams is derivable
from the axioms of symmetric monoidal categories if and only if it can be obtained from
certain geometric movements in the plane [Selinger, 2011]. For further work on coherence of
monoidal categories and the rigorous manipulation of string diagrams, see [Joyal and Street,
1991, 1993].

For example, the interchange law (4) corresponds to the un-ambiguity of reading the string
diagram

f f ′

g g′

In contrast, premonoidal categories are usually not rendered graphically. If one does, ex-
tra ‘control flow wires‘ must be attached to keep track of the order of effects [Jeffrey, 1998;

28

Møgelberg and Staton, 2014]. In string diagrams, all coherence isomorphisms are completely
absent from the graphical presentation, and wires typed I need not be drawn. This leads to
states ψ : I → X and effects ρ : X → I being drawn as follows

ψ

ρX

X

(5)

There seems to be something inherently two-dimensional about monoidal categories
which makes them cumbersome to use when compressed in one-dimensional programming
notation (though attempts exist [Staton et al., 2017a]). In the presence of additional struc-
ture for copying and discarding, programming syntax becomes useful again. We exploit this
when we define the internal language of CD categories (Section 7).

3.6 Monads and Algebraic Effects

The importance of monads to effectful programming has been understood since Moggi. An
important class of monads arises from algebraic theories, which makes universal algebra an
important tool for presenting effects in programming languages. This paradigm has been
termed algebraic effects, going back to Plotkin and Power [2003]. It allows us to give a fo-
cused analysis of the phenomena of interest, while making it routine to combine these fea-
tures with other constructs to obtain a full programming language (e.g. [Ahman and Staton,
2013; Johann et al., 2010; Kammar and Plotkin, 2012; Pretnar, 2010]). Algebraic effects are
fundamental to the development of languages such as EFF [Bauer and Pretnar, 2015] and
KOKA [Leijen, 2014].

There is a well-known equivalence between finitary monads on Set, algebraic theories
and Lawvere theories [Lawvere, 1963]. We will now recall parts of this equivalence, as alge-
braic theories are a recurring tool in this thesis. First-order algebraic theories will be gener-
alized to the second-order algebraic theories in Section 3.7.

An algebraic theory can be presented using operations and equations. For example, the
theory of (real) vector spaces can be presented using a binary operation (+), a constant 0
and unary operations r · (−) for every r ∈ R. A well-known system of axioms is

x + (y + z) = (x + y) + z a · (b · x) = (a · b) · x
x + y = y + x 1 · x = x

x + 0 = x a · (x + y) = a · x + a · y
0 · x = 0 (a + b) · x = a · x + b · x

Such presentations are not unique, that is, different systems of axioms can be chosen for
the same theory. Furthermore, not even the operation signature is unique. We could have
included, say, a unary operation (−), which is expressible in our presentation as −x =

(−1) · x. Note that we could not have dispensed with the constant 0, as doing so would

29

make the empty set a valid vector space. To overcome the non-uniqueness of presentations,
we can seek to give an unbiased presentation of a theory which doesn’t prefer any particular
set of operation symbols. We do this by considering all possible derived operations at once,
that is all terms x1, . . . , xn ` t of the theory, modulo equations. In the theory of vector spaces,
to give a term-modulo-equations over x1, . . . , xn is to give a formal linear combination

a1x1 + . . . + anxn with ai ∈ R (6)

Once we have identified the derived operations, we need to specify how these combine
under substitution. This substitution structure can be organized in several equivalent ways,
notably abstract clones, Lawvere theories and monads.

Monads For a set X, we define

T(X) = {terms x1, . . . , xn ` t modulo equations | x1, . . . , xn ∈ X}

The construction T has the structure of a monad Set→ Set whose unit considers an element
x ∈ X as a one-variable term, and Kleisli composition is substitution. Monads of this form
are strong and finitary (see (16)), and every such monad arises from an algebraic theory.

Lawvere theories We define a category L whose objects are natural numbers n ∈ N and
whose morphisms are tuples of terms

L(m, n) = {(t1, . . . , tn) | x1, . . . , xm ` ti modulo equations }

The identity is given by variables (x1, . . . , xn) and composition of morphisms is substitution.

There is well-known equivalence between the following structures (e.g. [Hyland and
Power, 2007])

(i) Finitary monads and their algebras

(ii) Lawvere theories and their models (product-preserving functors into Set)

(iii) Unbiased algebraic theories and their models

The simplest consistent algebraic theory has no operation symbols at all; this is some-
times called the theory of equality. Its associated monad is the identity monad T(X) ∼= X; its
associated Lawvere theory is Finop, the dual of finite sets and functions.

Generic effects Given a monad T, we recover the operations of the theory as certain well-
behaved transformations [Plotkin and Power, 2003]: An n-ary algebraic operation for T is a
set-indexed family of functions ωX : (T(X))n → T(X) satisfying for all f : X → T(Y) and
t1, . . . , tn ∈ T(X) that

f+ωX(t1, . . . , tn) = ωY(f+t1, . . . , f+tn)

30

where f+ : T(X) → T(Y) is the Kleisli extension of f . The algebraic operations are in one-
to-one correspondence with the elements ξ ∈ T({1, . . . , n}), called generic effects, where we
set ξ = ωn([1], . . . , [n]) and conversely reconstruct

ωX(t1, . . . , tn) = (λn.tn)
+ξ

The correspondence of algebraic operations and generic effects is crucial when we axioma-
tize programming languages using algebra, e.g. Sections 11.2 and 21.2.

3.6.1 Example: Monads of Linear Combinations

Important running examples in this thesis are derived from the monad of linear combina-
tions, which corresponds to the unbiased presentation of vector spaces in (6): For a set X, a
formal linear combination over X can be identified with a coefficient function p : X → R

which has finite support, that is p(x) = 0 for all but finitely many x. The monad defined by

F(X) = {p : X → R finitely supported }

is thus called the linear combination monad or free vector space monad. Its unit is the
“Dirac” linear combination

ηX(x) = δx where δx(y) = [x = y]

and given p ∈ F(X) and f : X → F(Y), their Kleisli extension is

f+p(y) = ∑
x∈X

p(x) · f (x)(y)

The Lawvere theory LVec of vector spaces admits a similarly nice description. To give
a morphism m → n is to give a linear function Rn → Rm (note the contravariance), and
substitution corresponds to reverse function composition. Equivalently, morphisms m → n
are matrices Rm×n and composition is reverse matrix multiplication.

We can use the previous paragraph to give concise unbiased presentations of important
algebraic theories in the form of submonads of F.

Commutative monoids A formal sum is a formal linear combination with nonnegative in-
teger coefficients. Other words for this are finite multiset, or bag. The bag monad is thus
defined as

B(X) = {p : X →N finitely supported } (7)

This monad gives an unbiased presentation of the theory of commutative monoids. The
corresponding Lawvere theory is given by matrices over the natural numbers (under reverse
composition)

LCMon(m, n) = Nm×n

31

Affine spaces An affine combination is a linear combination of total weight 1. The affine
combination monad is thus defined as

D±(X) = {p : X → R finitely supported | ∑
x∈X

p(x) = 1} (8)

An affine space is precisely an algebra for this monad, and homomorphisms of affine spaces
are called affine or affine-linear functions. Note that because D±(∅) = ∅, the theory of affine
spaces has no constant symbol. So unlike vector spaces, the empty set is a valid affine space.
In the Lawvere theory, LAff(m, n) consists of (m× n)-matrices whose columns sum to 1.

Convex sets A convex combination is a nonnegative linear combination of total weight 1.
The convex combination monad is thus defined as

D(X) = {p : X → [0, 1] finitely supported | ∑
x∈X

p(x) = 1} (9)

In the corresponding Lawvere theory, we have

LCvx(m, n) = {A ∈ Rm×n column-stochastic}.

An (abstract) convex set is a set where convex combinations may be taken. The theory
can be presented using a family of operations (+p) for p ∈ [0, 1] corresponding to the binary
convex combination

x +p y = (1− p)x + py (10)

subject to the following axioms due to Stone [1949]

x +0 y = x x +p x = x

x +(1−p) y = y +p x x +p (y +q z) = (x +r y) +pq y when p(1− q) = (1− pq)r

Every convex subset A of a real vector space obtains the structure of an abstract convex set
by (10) and Stone has characterized the abstract convex sets that arise that way. The free
convex set D(n) on n generators is isomorphic to the (n− 1)-dimensional simplex.

We will give a probabilistic interpretation of the convex combination monad in Defini-
tion 4.1. Under the probabilistic reading, the generic effect of the convex combination (+p)

is the coin flip flipp ∈ D(2) with bias p. The affine combination monad will have an inter-
pretation as a generalized probability theory, potentially allowing negative probabilities, in
Section 5.4.

3.6.2 Commutative Monads

If our monad of interest comes from an algebraic theory, then the dataflow properties of the
monad reflect properties of the theory. Recall the following definitions:

Definition 3.3 A strong monad T is called commutative if the following diagram commutes

T(X)× T(Y) T(TX×Y) T2(X×Y)

T(X× TY) T2(X×Y) T(X×Y)

stTX,Y T(st′X,Y)

joinX×Yst′X,TY

T(stX,Y) joinX×Y

(11)

32

where st′X,Y is a costrength defined by

TX×Y Y× TX T(Y× X) T(X×Y)
swapTX,Y stY,X T(swapY,X)

Under the monadic metalanguage, this condition is equivalent to commutativity in the pro-
gramming language sense. That is, the monad T is commutative if and only if

(let x ← u in let y ← v in t) = (let y ← v in let x ← u in t) (12)

holds whenever y /∈ fv(u) and x /∈ fv(v).
We say an algebraic theory is commutative if its associated monad is. We can spell this

condition out concretely in terms of a presentation: Two operation symbols ω,φ of arities
m, n are said to commute if the following equation is derivable

ω(φ(x11, . . . , x1n), . . . , φ(xm1, . . . , xmn)) = φ(ω(x11, . . . , xm1), . . . , ω(x1n, . . . , xmn)) (13)

An algebraic theory is commutative if all operation symbols commute.
The free vector space monad is commutative; the composite morphism

⊗ : F(X)× F(Y)→ F(X×Y)

in (11) corresponds to taking the pointwise product

(p⊗ q)(x, y) = p(x) · q(y) (14)

The convex combination monad D is immediately seen to be commutative as a sub-
monad of F. One can also verify this using Stone’s presentation: Instantiating (13) with
the operations (+p) and (+q), the following equation is indeed derivable from the axioms:

(x +p y) +q (z +p w) = (x +q z) +p (y +q w)

3.6.3 Affine Monads

Definition 3.4 A monad T on a category C with terminal object 1 is called affine if T(1) ∼= 1.

This means that computations whose result is unused can be discarded. T is affine if and
only if the equation

(let x ← u in t) = t (15)

holds whenever x is not free in t. Given the presentation of an algebraic theory, the associated
monad is affine if and only if all operations ω are idempotent, i.e.

ω(x, . . . , x) = x

is derivable (constant symbols are never idempotent). The theories of affine spaces and
convex sets are indeed affine, but the theory of vector spaces and abelian groups are not.
For example x +p x = x holds for all x, but x + x = x is not derivable. For a treatment of
commutative and idempotent theories from the perspective of universal algebra, see [Linton,
1966; Romanowska and Smith, 2002].

33

3.6.4 Finitary Monads

Starting from an algebraic theory, every term will only make use of finitely many variables.
This condition makes the associated monad T finitary, meaning it preserves filtered colimits3.
In particular, the set T(X) can be written as a coend

T(X) ∼=
∫ n∈Fin

T(n)× Xn (16)

Conversely, every finitary monad on Set comes from an algebraic theory. Note that such
monads usually do not preserve other colimits such as coproducts. For example, the pres-
ence of a nontrivial binary operation ω introduces cross-terms like ω(x, y) in T({x}+ {y})
which do not lie in T({x}) or T({y}) respectively. From the programmer’s perspective,
this phenomenon corresponds to a branching of control flow such as for probabilistic choice
x +p y. The only cocontinuous monad on Set is the writer monad (Section 5.2), however will
find interesting examples over other categories in Section 21.2 and Section 25.2.

3.7 Second-order Algebraic Theories

Second-order algebraic theories are an equational fragment of second-order logic, which
extends the usual algebraic theories to encompass variable-binding operations such as λ-
abstraction or logical quantifiers. Such theories will serve as crucial tools in this thesis for
describing generative effects in programming languages such as urn creation (Section 11.1),
random sampling (Section 21.2) or fresh name generation (Section 25.2).

Second-order theories were originally introduced in [Fiore and Hur, 2010] and [Fiore and
Mahmoud, 2010]. Here, we are going to use a particular flavor called parameterized algebraic
theories due to Staton [2013c].

We shall begin with an extended example along the lines of [Staton, 2013a]: In predicate
logic, we distinguish two types of expressions, namely terms and formulas.

(i) terms are built from variables x, y, z ranging over the domain of discourse, and opera-
tions such as x + y.

(ii) formulas are built from variables ϕ, χ standing for predicates, and operations such as
ϕ∨ χ. Predicates may themselves take parameters, such as ψ[x, x + y], and some oper-
ations bind variables, like the quantifier in ∃x.ψ[x, x + y]. Note that ϕ[] is the formula
built from predicate variable ϕ taking zero parameters.

We can also discuss two types of equations: Those between terms, like x + y = y + x, are
traditional first-order equations. Those between formulas like

ϕ[] ∨ (χ[] ∨ ϕ[]) = ϕ[] ∨ χ[] or (∃x.∃y.ψ[x, y]) = (∃y.∃x.ψ[x, y])

are second-order equations, which express that certain formulas (with free predicates) are
equivalent. We can reason algebraically using such equations, both by specializing terms for

3technically, the condition which generalizes is the preservation of sifted colimits. This makes no difference
for monads on Set

34

variables, and formulas for predicates (explained below).

We now generalize the predicate logic example using the following generic terminology:

(i) variables x, y, z will be called parameters, and expressions constructed from them are
terms x + y

(ii) variables ϕ, χ will be called metavariables. Each metavariable has an arity ϕ : n. We’ll
use computation as a generic name for second-order expressions built up from metavari-
ables and parameters.

We fix a first-order algebraic theory S which serves as the theory of parameters, and pro-
vides us with the construction and equality judgement x1, . . . , xn ` s = t for terms.

A signature T parameterized by S is given by a set of function symbols F, G, . . . with an
arity written F : (p | n1, . . . , nk) where p is a natural number and (n1, . . . , nk) a list of natural
numbers. We read this arity as follows: F takes p terms and k computations, where the i-th
computation itself expects ni parameters. If ni > 0, the operation F can be thought of as
binding these parameters.

In the predicate logic example, we have the following signature: Disjunction is ∨ :
(0 | 0, 0) because it takes two closed formulas and no variables. The existential quantifier
has signature ∃ : (0 | 1) because it takes one formula with one free parameter. We could also
introduce a ternary operation (− = −) ∧ (−) : (2 | 0) which compares two parameters for
equality and combines the result with some other formula.

Computations are constructed in a two-zone context Γ |∆ where Γ = (x1, . . . , xn) is a con-
text of parameters and ∆ is a context of metavariables. The rules for forming computations
are plugging terms into metavariables

Γ ` t1 · · · Γ ` tni

Γ | ϕ1 : n1 . . . ϕk : nk ` ϕi[t1, . . . , tni] (MVar)

and by applying operations of arity F : (p | n1, . . . , nk) as

Γ ` t1 . . . Γ ` tp Γ, a11, . . . , a1n1 |∆ ` u1 . . . Γ, ak1, . . . , a1nk |∆ ` uk

Γ |∆ ` F(t1, . . . , tp, ~a1.u1, . . . , ~ak.uk) (F-App)

Weakening and exchange rules for contexts are derivable and the names of the parameters
bound in the (F-App)-rule are considered up to α-equivalence.

An example computation over the signature of predicate logic is x, y | ϕ : 2 ` ϕ[y, x].
Applying the operation ∃ gives x | ϕ : 2 ` ∃(y.ϕ[y, x]) which is more idiomatically rendered
as ∃y.ϕ[y, x].

In second-order algebra, we can define two notions of substitution, terms-for-parameters
and computations-for-metavariables. The latter substitution is capture-avoiding.

35

Term-for-variable Given a computation u and a term t, we form u[t/a] by replacing every
occurrence of the free parameter a by t. For example (∃y.ϕ[x, x + y])[0/x] = ∃y.ϕ[0, 0 + y].
The following typing rule is derivable

Γ, a |∆ ` u Γ ` t
Γ |∆ ` u[t/a]

Computation-for-metavariable Given a computation u and another computation w, we
form u[~a.w/ϕ] by replacing every occurrence of the metavariable ϕ[a1, . . . , an] (of arity n)
with w; that is, the extra free parameters a1, . . . , an of w get bound to the respective arguments
of ϕ. Instructive examples:

(∃x.ϕ[x, x + y])[a b.ψ[a− b]/ϕ] = ∃x.ψ[x− (x + y)]

(∃x.ψ[x])[y.χ[x− y]/ψ] = ∃y.χ[x− y]

The derivable typing rule for this kind of substitution reads

Γ |∆, ϕ : n ` u Γ, a1, . . . , an |∆ ` w
Γ |∆ ` u[~a.w/ϕ]

Equational logic An equational logic ≡ is formed by closing a set of axioms under all sub-
stitution instances, weakening, reflexivity, symmetry, transitivity and the congruence rules

Γ ` t1 = t′1 · · · Γ ` tni = t′ni

Γ | ϕ1 : n1 . . . ϕk : nk ` ϕi[t1, . . . , tni] = ϕi[t′1, . . . , t′ni
]

Γ ` t1 = t′1 . . . Γ ` tp = t′p Γ,~a1 |∆ ` u1 ≡ u′1 . . . Γ,~ak |∆ ` uk ≡ u′k
Γ |∆ ` F(t1, . . . , tp,~a1.u1, . . .~ak.uk) ≡ F(t′1, . . . , t′p,~a1.u′1, . . .~ak.u′k)

Note that these rules make use of the equality relation Γ ` t1 = t′1 of S to let us simplify terms
of parameters. One subtlety is that while weakening is valid for equations, strengthening
is not; therefore we must take care to always annotate our equations with contexts: For
example, the following equation is valid for predicate logic

x | ϕ : 0 ` ∃y.ϕ[] ≡ ϕ[] (17)

Even though the equation does not use the parameters x, we cannot remove x from context:
The following equation is not valid

− | ϕ : 0 ` ∃y.ϕ[] ≡ ϕ[] (18)

Intuitively, the second equation is invalid if the domain of discourse is empty (see Exam-
ple 3.5).

36

Semantics The interpretation of second-order algebra is straightforward in cartesian closed
categories C. We choose an object C of computation outcomes and an object of parameters P
(which is a model of S), and interpretations

JFK : P` × CPn1 × . . .× CPnk → C

for every operation symbol F : (` | n1, . . . , nk). We then recursively extend the interpretation
to all computations, making use of λ-abstraction for parameter binding.

For example, the standard boolean semantics of predicate logic in C = Set takes P = X
as the domain of discourse and C = 2 as the object of outcomes. The semantics associates to
every formula x1, . . . , x` | ϕ1 : n1, . . . , ϕk : nk ` u the obvious second-order predicate

JuK : Xp × 2Xn1 × . . .× 2Xnk → 2

Here, the interpretation of the operation symbol ∃ is the function J∃K : 2X → 2 with J∃K(p) =
true iff there is some x ∈ X with p(x) = true.

Example 3.5 Both sides of (17) denote the same function

p : X× 2→ 2, (x, b) 7→ b

However the left hand side of (18) denotes the function

J∃y.ϕ[]K : 2→ 2, b 7→ false

when X = ∅. This demonstrates why the context for equations may not be strengthened.

It can be shown that ≡ is a sound and complete deduction system with respect to semantics
in cartesian closed categories [Staton, 2013b]. Full cartesian closure is not necessary to give a
sound model of second-order algebra, and we will see simpler types of models in Section 12
and Section 21.2. Term models do however naturally live in presheaf categories, which are
cartesian closed. Parameterized theories can be understood from the following viewpoints

(i) a presentation of finitary monads on presheaf categories [Staton, 2013a, Corollary 1]

(ii) a presentation of an enriched Lawvere theory or Freyd category [Staton, 2014]

We won’t make the enriched category theory precise here but it should not come as a surprise
that parameterized theories are useful in the algebraic presentation of programming lan-
guages (Section 3.3) and Markov categories (Section 7). We briefly sketch how to obtain the
monad: Let S denote the Lawvere theory for the theory of parameters, and let Ŝ = [Sop, Set]

denote the category of presheaves on S. If X ∈ Ŝ is such a presheaf, the set X(Γ) can be
understood as the elements of X in the context of variables Γ, and the functorial action is
variable substitution. The representable presheaf S(−, n) corresponds to a metavariable of
arity n, for

S(Γ, n) ∼= {(t1, . . . , tn) : Γ ` ti}
We define the strong monad T : Ŝ → Ŝ on finite sums of representables as terms-modulo-
equations

T(S(−, n1) + . . . + S(−, nk))(Γ)
def
= {Γ | ϕ1 : n1, . . . , ϕk : nk ` u}/≡

and extend this to arbitrary presheaves by preservation of sifted colimits as in (16). The unit
of the monad is given by the variable rule (MVar) and Kleisli extension is metasubstitution.

37

4 Traditional Models of Probability

Here, we review the traditional foundations of probability theory. They are all instances of
Kolmogorov’s measure-theoretic axioms, but we emphasize that there are many different
levels of expressivity ranging from finite probability to continuous probability to fully gen-
eral probability measures. Typically, statistical notions center around the concepts of prob-
ability spaces and random variables. We will instead shift towards the more dynamic view
of stochastic maps (probability kernels), which are closer to the needs of program semantics.
An important tool will be the study of probability monads.

Random variables and probability spaces A probability space is a space Ω together with
a probability distribution P on it. A random variable X taking values in a space V is a
function X : Ω → V (satisfying conditions like measurability). The random variable X

induces a probability distribution PX
def
= X∗P on V by pushforward, called the law of X. Two

variables X, Y : Ω → X are called equal in distributions, written X d
= Y if they have the same

law. The elements ω ∈ Ω are thought of as seeds or sources of randomness, and the values
X(ω), Y(ω) are realizations or samples of the random variables under the seed ω. When we
write Pr(X = Y) we actually evaluate the probability of the event {ω : X(ω) = Y(ω)})
under the distribution P. Statistical model notation is a concise way to introduce random
variables and their joint distributions, for example

X ∼ Bernoulli(1/2)

Y ∼ Bernoulli(1/2)

Z = X⊕Y

postulates the existence of variables X, Y, Z : Ω → R where X, Y are independent fair coin
flips, and Z is their exclusive-or. The role of the probability space Ω is somewhat mysteri-
ous. One treats it as an abstract entity and works with the specified joint laws only. However
there are subtleties which are often glossed over, for example when allocating new random
variables, one must be able to consistently enlarge Ω to supply the extra randomness [Tao,
2010].

We will now switch from the random variable picture to a view of statistics that empha-
sizes stochastic computation and maintains sources of randomness explicitly via monads.
Nonetheless, the idea of random variables and their laws will be fundamental in the devel-
opment of quasi-Borel spaces (Section 27). We will for now give a high-level introduction of
what we expect from a probability monad, and provide concrete definitions in Definitions 4.1
and 4.9.

Probability monads Given a space X, the probability monad P(X) is the space of all prob-
ability distributions on X. The unit of the monad assigns to an element x ∈ X the Dirac
distribution δx which returns x deterministically. A Kleisli map f : X → P(Y) (sometimes
written X ; Y) is called a stochastic map or probability kernel, because it returns for every
input x ∈ X a distribution over possible outputs in Y. Kleisli composition corresponds to

38

running stochastic computations in sequence, aggregating their randomness. We note that
samples are not emphasized in this picture, other than serving as names (types) for the out-
puts of distributions.

Monads naturally appear in the structure of effectful computation. Even in a program-
ming language that doesn’t explicitly track effects in the type system, the thunk type () −> a
has the structure of a monad. This is used to great effect by the use of samplers in WEBPPL
[Goodman et al., 2016]. The fine control over effects makes it particularly convenient to ex-
press hierarchical models [Goodman et al., 2016, Chapter 12] in probabilistic programming.
Distributions like the Beta or Dirichlet distribution are very naturally expressed as distribu-
tions over distributions. We will study those distributions in detail in Chapter III.

Important structure of probabilistic computation can be expressed using only the monad.

Probability is covariant Given a map f : X → Y and a distribution π ∈ P(X), we ob-
tain a pushforward f∗π = P(f)(π) from the functorial action of the probability monad. In
particular the identities id∗π = π and f∗(g∗π) = (f ◦ g)∗π hold.

Stochastic computation is commutative and discardable The probability monad P is strong,
i.e. we have a map

stX,Y : X× PY → P(X×Y)

The two ways from Definition 3.3 of using the strength to run stochastic computations in
parallel agree, meaning that P is commutative. The resulting map

⊗ : P(X)× P(Y)→ P(X×Y)

takes two distributions and constructs their product distribution. The commutativity claim
is nontrivial; for measurable spaces, we will see that it corresponds to Fubini’s theorem (21).
Furthermore stochastic computation is discardable, which corresponds to the fact that P is
affine: The only probability distribution on the one-point space 1 = {?} is δ?.

Stochastic computation admits copying and discarding Let ∆ : X → X × X denote the
diagonal map. Composing with δ results in a stochastic map X → P(X × X) which copies
its input. Pushing a distribution forward along ∆ results in perfectly correlated samples.
Similarly, the unique map X → 1 results in a stochastic map X → P(1) ∼= 1 which discards
the input X.

The properties above are instances (and in fact motivation) of our Soft Definition 1.0 of
probabilistic system; they will the basis of the generalizations in Chapter II.

We will now introduce the most important flavors of probability through their respective
probability monads.

39

4.1 Finite Probability

A finite distribution or probability mass function on a set X is a finitely supported function
π : X → [0, 1] which satisfies

∑
x∈X

π(x) = 1

Definition 4.1 The finite distribution monad D assigns to a set X the set of probability mass
functions on X. The unit of the monad assigns to an element x the Dirac distribution δx with
mass function δx(y) = [x = y].4

We recognize D as the convex combination monad of (9). We will not repeat the definitions of
the monad structure from Section 3.6.1, but instead offer a different view on these operations
in terms of convex combinations. Notice that probability mass functions are closed under
taking convex combinations. It will be useful to denote the Dirac distribution δx as [x],
following the ‘return’ of the monadic metalanguage. Every element π ∈ DX can then be
written as a finite convex combination of Dirac distributions5

π =
n

∑
i=1

pi[xi] with p1 + · · ·+ pn = 1

The join of the monad acts in the following way on formal convex combinations,

∑
i∈I

pi

[
∑
j∈Ji

qij[xij]

]
7→∑

i∈I
∑
j∈Ji

piqij[xij].

and pushforward by f : X → Y takes the form

f∗

(
∑
i∈I

pi[xi]

)
= ∑

i∈I
pi[f (xi)]

If X, Y are finite, a probability kernel p : X → D(Y) can be described as a column stochas-
tic matrix P ∈ RY×X where Pyx = p(x)(y). Kleisli composition then coincides with matrix
multiplication. Probability kernels are sometimes written in the evocative “conditional prob-

ability notation” p(y|x) def
= p(x)(y) where the vertical bar has no other formal meaning than

to separate the outputs from the inputs. In this notation, kernel composition takes the form
of the Kolmogorov-Chapman equation

(qp)(z|x) = ∑
y

q(z|y)p(y|x) (19)

The probability monad D has a strength given by(
x, ∑

i∈I
pi[yi]

)
7→∑

i∈I
pi[(x, yi)]

4Recall Iverson bracket notation, i.e. [φ] = 1 if φ is true, and [φ] = 0 otherwise
5in a non-unique way

40

As seen in (14), the monad D is commutative: In terms of convex combinations, this amounts
to checking the equation

∑
i∈I

∑
j∈J

piqj[(xi, yj)] = ∑
j∈J

∑
i∈I

qj pi[(xi, yj)]

that is, the order of summation can be interchanged.

4.2 Measure-Theoretic Probability

In order to formalize infinite sequences of random variables or distributions with uncount-
able support like Gaussians, one traditionally employs measure theory. We refer to [Kallen-
berg, 1997] for an introduction.

A σ-algebra on a set X is a collection of subsets of X which contains ∅ and is closed un-
der complementation and countable union. A measurable space is a set X together with a
σ-algebra ΣX on X, sometimes written (X, ΣX). We call a set U ⊆ X measurable if U ∈ ΣX.
A function f : X → Y between measurable spaces is called measurable if for all measur-
able subsets A ⊆ Y, the preimage f−1(A) is measurable in X. The measurable spaces and
measurable functions form a category Meas.

Given σ-algebras ΣX, ΣY, the product σ-algebra is the σ-algebra generated by the rectangles
A × B with A ∈ ΣX, B ∈ ΣY. In Meas, (X × Y, ΣX ⊗ ΣY) is a categorical product. The
category Meas has all limits and colimits. A measurable space X is discrete if every subset is
measurable, i.e. ΣX = P(X).

Every topology induces a σ-algebra: If X is a topological space, the Borel σ-algebra B(X)

is generated by the open sets of X. We will consider topological spaces equipped with their
Borel σ-algebra by default. This makes all continuous functions measurable, giving a faithful
functor Top ↪→ Meas. We will mainly consider the particularly nice class of Polish spaces.

Definition 4.2 A Polish space is a topological space homeomorphic to a complete metric
space with a countable dense subset.

Examples include Rn, the open interval (0, 1), Cantor space 2ω and countable discrete topo-
logical spaces.

Definition 4.3 A standard Borel space is a measurable space isomorphic to (X,B(X)) for some
Polish space X. We will sometimes refer to measurable functions X → Y between standard
Borel spaces as Borel, as well as their measurable subsets as Borel sets.

Standard Borel spaces form a well-behaved subcategory Sbs ⊆ Meas which contains most
relevant examples like Rn and is closed under important constructions like countable prod-
ucts and coproducts. Yet, these spaces admit a strong characterization

Theorem 4.4 (e.g. [Kechris, 1987, Ch. 15]) The following are equivalent for a measurable space X

(i) X is a standard Borel space

(ii) X is either empty or a retract of R in Meas

(iii) X is measurably isomorphic to R, or countable and discrete

41

Furthermore, if X is a standard Borel space and A ⊆ X a Borel subset, then A is itself a standard
Borel space when equipped with the subspace-σ-algebra ΣA = {A ∩ X |X ∈ ΣX}.

Definition 4.5 Let X be a measurable space. A measure on X is a function µ : ΣX → [0, ∞]

such that

µ(∅) = 0, µ

(
∞

∑
i=1

Ai

)
=

∞

∑
i=1

µ(Ai) (20)

where ∑i Ai denotes disjoint union.

A measure is called finite if µ(X) < ∞, σ-finite if X is a countable union of sets of finite mea-
sure, s-finite if it is a countable sum of finite measures and a probability measure if µ(X) = 1.
If µ is a measure on X and f : X → Y is measurable, the pushforward measure f∗µ is defined
by f∗µ(A) = µ(f−1(A)). For x ∈ X, the Dirac measure δx is the probability measure on X de-
fined by δx(A) = [x ∈ A]. The Borel-Lebesgue measure is the unique measure on (R,B(R))

assigning every interval its length, that is `([a, b]) = b− a for all a ≤ b.

Note that measures on a space X are closed under pointwise nonnegative linear combi-
nations, while probability measures are closed under convex combinations only.

Integration: For a measurable function f : X → [0, ∞) and a measure µ, its integral is written∫
X

f (x)µ(dx) ∈ [0, ∞]

and we may omit the subscript X for convenience. The integral extends to measurable func-
tions f : X → R that are integrable, i.e. satisfy

∫
| f (x)|µ(dx) < ∞. For a measurable set A,

we define ∫
A

f (x)µ(dx) def
=
∫

X
f (x)[x ∈ A]µ(dx)

It holds for every measurable function f that∫
f (x)δx0(dx) = f (x0)

Definition 4.6 If µ, ν are two measures on X, we say µ is absolutely continuous with respect
to ν, written µ� ν, if for all measurable sets A, ν(A) = 0 implies µ(A) = 0.

Theorem 4.7 (Radon-Nikodým) Is µ, ν are σ-finite measures on X, then µ � ν if and only if
there is a measurable function f : X → [0, ∞) such that

µ(A) =
∫

A
f (x)ν(dx)

The function f is called a density function for µ.

Density functions are important practical tools for defining measures. For example, the
standard normal distribution on R is defined as having the density function ϕ with respect
to the Lebesgue measure, where

ϕ(x) =
1√
2π

e−x2/2

42

If µ, ν are probability measures on X, Y respectively, their product measure is the unique
probability measure µ⊗ ν on X×Y which satisfies

(µ⊗ ν)(A× B) = µ(A) · ν(B) ∀A ∈ ΣX, B ∈ ΣY

Fubini’s theorem says that for all integrable functions f : X×Y → R, the partial integra-
tion functions ∫

X
f (x,−)µ(dx),

∫
Y

f (−, y)ν(dy)

are themselves integrable and the order of integration can be interchanged∫
Y

∫
X

f (x, y)µ(dx)ν(dy) =
∫

X×Y
f (x, y)(µ⊗ ν)(d(x, y)) =

∫
X

∫
Y

f (x, y)ν(dy)µ(dx) (21)

The construction of product distributions and Fubini’s theorem extend to s-finite measures.
Fubini’s theorem need not hold for more general measures without further assumptions.

Definition 4.8 A kernel X ; Y between measurable spaces is a function f : X×ΣY → [0, ∞]

such that f (−, A) is measurable for all A ∈ ΣY and f (x,−) is a measure for all x ∈ X.

Kernels f : X ; Y and g : Y ; Z compose as

(g • f)(x, A) =
∫

Y
g(y, A) f (x, dy) (22)

and any measurable map f : X → Y induces a Dirac kernel δ f : X ; Y via

δ f (x, A) = [f (x) ∈ A]

This defines a category Ker of kernels, whose identities X ; X are given by δidX.
A probability kernel or Markov kernel is a kernel such that f (x,−) is a probability measure

for all x. A kernel is finite if f (x, X) < C for some constant C < ∞ not depending on x,
and s-finite if it is a countable sum of finite kernels. Both Markov kernels and s-finite kernels
form subcategories of Ker, called Stoch and SfKer respectively.

Definition 4.9 (Giry monad) There is a monad G : Meas → Meas due to Giry that assigns
to X the space of probability measures GX, endowed with the least σ-algebra making all
evaluations

evA : GX → [0, 1], µ 7→ µ(A)

measurable for A ∈ ΣX. The unit of this monad takes the Dirac measure x 7→ δx. Kleisli
composition takes the average measure via integration, that is for f : X → GY and µ ∈ GX,
we have

f †(µ)(A) =
∫

X
f (x)(A)µ(dx) (23)

For h : X → Y, the functorial action G(h)(µ) is precisely the pushforward measure h∗µ.

Like the distribution monad, the Giry monad is strong, affine and commutative, where com-
mutativity follows from Fubini’s theorem (21). If X is standard Borel, so is GX, giving a
restricted monad Gsbs : Sbs → Sbs. A Kleisli arrow X → GY is the same as a Markov kernel
X ; Y, and Kleisli composition (23) agrees with kernel composition (22). s-finite kernels are
not known to arise as the Kleisli category of any monad.

43

Example 4.10 For p ∈ [0, 1], let flip(p) ∈ G(2) denote the coin flip with bias p. Every proba-
bility measure on the booleans is of this form, making

flip : [0, 1]→ G(2) (24)

an isomorphism in Meas. In fact, if we give [0, 1] the structure of a G-algebra by the expecta-
tion (barycenter) map ε : G([0, 1])→ [0, 1]

ε(µ) =
∫

xµ(dx)

then (24) becomes an isomorphism of G-algebras.

4.3 Higher-order Probability

By higher-order probability, we understand the study of probability on function spaces YX,
which are the spaces of all measurable functions X → Y. An important special case is the
study of random Borel subsets of the reals, which are probability measures on the space 2R.

Providing a foundation for random functions is difficult in measure-theoretic probability,
because the category of measurable spaces is not cartesian closed: For example, it is unclear
which σ-algebra to put on the space 2R of Borel sets. A result of Aumann shows that no
answer can be satisfactory

Theorem 4.11 (Aumann [1961]) There exists no σ-algebra Σ2R on the space 2R of Borel sets such
that the evaluation map (3) : 2R ×R→ 2 is measurable.

Higher-order functions are a common and useful feature of programming languages.
This makes developing a theory of random functions an important problem in the semantics
of probabilistic languages. Quasi-Borel spaces [Heunen et al., 2017] are an example of a cate-
gory which conservatively extends standard Borel spaces while being cartesian closed. The
space 2R of Borel sets is a genuine function space in quasi-Borel spaces, and the evaluation
map 2R ×R → 2 is a morphism. The theory of quasi-Borel spaces also induces a canonical
σ-algebra on 2R, which consists of what is known in descriptive set theory as Borel-on-Borel
families (Section 28). We will extensively review quasi-Borel spaces in Chapter V and ana-
lyze their theory of random functions in detail.

Other recent models combining probability and higher-order functions are probabilistic
coherence spaces [Ehrhard et al., 2014], stable cones model [Ehrhard et al., 2018], a function
analytic model [Dahlqvist and Kozen, 2020], game semantics [Paquet and Winskel, 2018],
geometry of interaction [Dal Lago and Hoshino, 2019], boolean-valued sets [Bacci et al., 2018]
and a boolean topos model [Simpson, 2017]. For an introduction to random Borel sets see
[Tsirelson, 2012].

4.4 Continuous Kernels, Duality, GNS Construction

If the measurable space in question arises from a topology, we can impose further continuity
restrictions on kernels.

44

Definition 4.12 (e.g. [Doberkat, 2004]) If X is a Polish space, we topologize the space GX
with the least topology making all integration maps

µ 7→
∫

X
f (x)µ(dx)

continuous for f : X → R continuous and bounded. With this topology GX is again Polish,
and the Giry monad restricts to a monad Gpol : Pol→ Pol. Its Borel σ-algebra coincides with
Definition 4.9, making the following diagram of faithful functors commute

Pol Sbs Meas

Pol Sbs Meas

Gpol Gsbs G

We will henceforth write G indiscriminately for all Giry constructions.

Note that a Kleisli map X → GX in Pol is required to be continuous. The corresponding
notion of convergence is weak convergence of measures (e.g [Kallenberg, 1997, Chapter 3]).
Other notions of continuous kernel are known for metric spaces, see [Breugel, 2005; Fritz
and Perrone, 2017].

A remarkable aspect of continuity is that we can set up measure theory as dual to func-
tional analysis, giving an entirely different perspective on why measures arise. This view
also naturally generalizes to the noncommutative world of quantum computation.

If X is a compact Hausdorff space, we call a measure µ on X Radon if it is finite and the
relations hold for all Borel sets A.

µ(A) = inf{µ(U) : A ⊆ U, U open}
µ(A) = sup{µ(K) : K ⊆ A, K compact}

Let C(X, R) denote the Banach space of continuous functions X → R with the supremum
norm. Then every Radon measure µ induces a linear functional φ : C(X, R)→ R by integra-
tion

φ(f) =
∫

f (x)µ(dx). (25)

This functional is positive in the sense that if f (x) ≥ 0 for all x, then φ(f) ≥ 0. Positive
functionals are automatically continuous; indeed one can easily see that φ is bounded with
norm µ(X). Importantly, a converse holds:

Theorem 4.13 (Riesz-Markov-Kakutani) Let X be a compact Hausdorff and φ : C(X, R) → R

a positive linear functional. Then there is a unique Radon measure µ on X such that φ is of the form
(25).

Radon probability measures correspond precisely to those positive linear functionals that are
unital, meaning φ(x 7→ 1) = 1. We can give this representation theorem a categorical form,
following [Furber and Jacobs, 2015]: A commutative C*-algebra is a (complex, unital) com-
mutative Banach algebra E with an involution (−)∗ : E → E satisfying properties. An

45

element x ∈ E is called positive if x = y∗ · y for some y ∈ E. A linear function φ : E → F be-
tween commutative C*-algebras is called MIU if it preserves multiplication, involution and
the unit. We write MIU for the category of commutative C*-algebras and MIU maps.

A classical example of a commutative C*-algebra is the space of complex-valued contin-
uous functions C(X, C) on a compact Hausdorff space X; here multiplication is pointwise
and the involution is complex conjugation. These are in fact the only examples – every com-
mutative C*-algebras is isomorphic to C(X, C) for a unique compact Hausdorff space X. The
space X can be taken to be the set X = MIU(C, C) endowed with a suitable topology. In fact,
the notion of continuous map is also recovered by MIU homomorphisms:

Theorem 4.14 (Gelfand duality) We have an equivalence of categories

CH MIUop
C(−,C)

MIU(−,C)

where CH is the category of compact Hausdorff spaces.

Probabilistic computation arises by relaxing the preservation of products between C*-algebras.
A linear function φ is called positive unital (PU) if it preserves positive elements and the unit.
Any MIU map is also PU. Denote by PU the category of commutative C*-algebras and posi-
tive unital maps, and define the Radon monadR : CH→ CH as

R(X) = {µ Radon probability measure on X } (26)

topologised as in Definition 4.12 (if X is furthermore Polish, every probability measure is
Radon, andRX and GX coincide).

Theorem 4.15 (Furber-Jacobs) The Radon monad induces an equivalence of categories

CHR PUop
CR

PU(−,C)

where the functor CR sends the object X ∈ CH to C(X, C) and the Kleisli morphism κ : X → RY to
the integration map

C(Y, C) 7→ C(X, C), f 7→ λx.
∫

f (y)κ(x)(dy)

In particular, to give a positive unital map C(X, C) → C is to give a Radon probability
measure on X, generalizing Theorem 4.13.

Example 4.16 For a finite sets X, Y, to give a probability kernel X → DY is the same as to
give a PU map CY → CX. The kernel is described by a column stochastic matrix in RY×X

while the PU map is a row stochastic real-valued matrix in CX×Y. The duality here is matrix
transposition. The direction RX → RY is sometimes called the distribution transformer picture
of probabilistic computation, while CY → CX is the expectation transformer picture.

46

The functional-analytic picture is a useful source of intuition in Section 6.2.3. We will make
frequent use of the equivalence Theorem 4.15 throughout Section 12.

As an aside, the setup using C*-algebras allows for a natural generalization from prob-
abilistic to quantum computation: Here we drop the commutativity assumption on the
C*-algebras. Let Mn := End((C2)⊗n) ∼= C2n×2n

denote the noncommutative C*-algebra of
2n × 2n matrices under matrix multiplication, then a quantum channel from m to n qubits is
given by a completely positive unital map Mn → Mm. The dual (covariant) notion is that of
a completely positive trace-preserving map Mm → Mn. See [Staton, 2015] for an introduction
from a programming perspective. Because information cannot be copied in quantum com-
putation, we need to weaken our axioms of synthetic probability, which be briefly discuss in
Section 6.2.4. We remark that the ‘noncommutative’ nature of quantum computation is un-
related to the notation of ‘commutativity’ for monads: The theory of quantum computation
is commutative in the sense of monads.

47

Chapter II

Categorical Probability Theory

Arguably, the category language, some call it
”abstract”, reflects mental undercurrents that surface
as our ”intuitive reasoning”; a comprehensive
mathematical description of this ”reasoning”, will be,
probably, even farther removed from the ”real world”
than categories and functors.

MIKHAIL GROMOV, In a Search for a Structure,
Part 1: On Entropy

Categorical probability theory is the central theme of this thesis. It seeks to abstract
the underlying structure of the various models of probability we have encountered, and
opens them up to generalization. A selection of recent work that uses synthetic reason-
ing is [Fritz and Perrone, 2017; Fritz and Rischel, 2020; Fritz et al., 2021; Ścibior et al., 2017;
St Clere Smithe, 2020; Jacobs, 2020].

Our first two sections are expository: We will begin by recalling two particular formula-
tions of categorical probability. In Section 5, we review commutative monads due to [Kock,
2011] as generalized monads of measures. We will give probabilistic interpretations of the
monads in Section 3.6.1 and introduce further running examples that are of interest in com-
puter science, like nondeterminism (Section 5.5), unification (Section 5.6) and name genera-
tion (Section 5.7).

In Section 6, we review a more general formalism of categorical probability, namely CD
& Markov categories due to [Cho and Jacobs, 2019; Fritz, 2020], give further examples and
discuss their relationship to Freyd categories. As they are monoidal categories with extra
structure, we can make convenient use of string diagrams (Section 3.5).

In Section 7, we introduce the CD-calculus, which is the internal language of CD cate-
gories. This is a ground computational λ-calculus with a simple theory. The language is
novel despite similarities with fine-grained call-by-value. We emphasize the transparent
translation between string diagrams and the CD-calculus, giving both formalisms the same
expressive power. We argue that this makes it the prototypical backbone of a ground proba-
bilistic programming language, and will later base our Gaussian language (Section 17.2) on
it.

In Section 8, we summarize the relevant technical concepts from synthetic probability
theory, such as independence (Section 8.1), almost-sure equality (Section 8.2) and condition-
als (Section 8.4). Our characterization of supports in Section 8.3 is novel.

In Section 9, we discuss a family of synthetic axioms called positivity, strong affineness
and causality due to [Fritz, 2020; Jacobs, 2016; Cho and Jacobs, 2019] under the umbrella
of ‘dataflow axioms’. Those axioms are interesting in that they can distinguish traditional
probability from more exotic theories such as negative probability, and impact the existence

48

of conditional distributions. We give an equivalent characterization of positivity (Proposi-
tion 9.3), prove that strong affineness coincides with it under common circumstances (Propo-
sition 9.7) and show that causality implies positivity (Proposition 9.12). We develop a read-
ing of positivity that concerns information hiding, which will be crucial in recognizing name
generation as a prime example of a nonpositive probability theory in Section 26. Section 9
is based on joint work in an upcoming article with Tobias Fritz, Tomáš Gonda, Nicholas
Gauguin Houghton-Larsen and Paolo Perrone.

5 Generalized Probability Monads

The oldest line of generalized probability theory goes back to [Kock, 2011] who postulates
that any commutative monad may serve as a generalized monad of measures. A related
notion is that of a ’measure category’ from [Ścibior et al., 2017, 4.3]. We summarize key
points of this development.

Definition 5.1 (Kock [2011]) Let C be a category with finite products. We consider every
commutative monad (Definition 3.3) M : C → C a generalized measure monad. We consider
every commutative and affine monad T : C → C a generalized probability monad (Defini-
tion 3.4).

This definition alone allows for a surprising amount of structure. The first step is to
leverage probabilistic intuitions by introducing synthetic measure-theoretic notation

Notation 5.2 The unit of the monad may be written δ, as it is the synthetic version of the
Dirac distribution. If f : X → Y and µ : A → MX, we write the functorial action M(f)µ :
A → MY as a pushforward f∗µ. Lastly, we can use a variant of the monadic metalanguage
where the let-binding let x ← µ in f is written as a formal integral∫

f (x)µ(dx) or
∫

µ(dx) f (x)

This notation works for both monadic computations and M-algebras like in (2). In the latter
case, the integral can also be written as an expectation

EX∼µ[f (X)]
def
=
∫

f (x)µ(dx)

The monad or algebra laws respectively read as the familiar equations∫
f (x)δx0(dx) = f (x0)∫

δxµ(dx) = µ∫
g(y)

[∫
f (x)µ(dx)

]
(dy) =

∫ ∫
g(y) f (x)(dy)µ(dx)

In this guise, commutativity becomes precisely Fubini’s theorem – the order of integration
does not matter for generalized integrals.∫

f (x, y)µ(dx)ν(dy) =
∫

f (x, y)ν(dy)µ(dx)

49

Affineness corresponds to normalization, if α does not depend on x then∫
αµ(dx) = α.

Example 5.3 Kernel composition (22) corresponds to an averaging of measures, which can
be concisely written using generalized integrals. If f : X → GY and g : Y → GZ, their
composite is

(g • f)(x) =
∫

g(y) f (x)(dy) = EY∼ f (x)[g(Y)]

where we make use of the G-algebra structure (GZ, join) on GZ.

Many ideas arise from this setup alone. For example, the object of scalars R def
= M(1)

generalizes the role the real numbers play in ordinary measure theory [Kock, 2011, Section
14,15]. It can be shown to that R carries a commutative monoid structure corresponding
to multiplication of reals. If the underlying category is cartesian closed, one can map the
monad M to the continuation monad using a monad morphism

tX : MX → ((X ⇒ R)⇒ R)

via the integration pairing

tX(µ) = λ f : (X ⇒ R) .
∫

f (x)µ(dx)

This is a synthetic analogue of Schwartz distributions and the double-dualization techniques
in Section 4.4.

We now give examples of important commutative monads and their probabilistic read-
ing:

5.1 Traditional Probability Monads

The probability monads of Section 4 were, of course, the original inspiration for monadic
models. We recall the categories Set, Sbs, Meas and Pol all equipped with their respective
affine and commutative probability monads. Generalized integral and expectation here are
the usual measure-theoretic integral.

Of these, only Set is cartesian closed. It was a challenge to find a model of both contin-
uous probability and higher-order functions (Section 4.3). One solution is the category of
quasi-Borel spaces, which we will treat in detail in Chapter V. The probability monad P on
quasi-Borel spaces is commutative and affine.

We will now introduce running examples of other generalized measure and probabil-
ity monads, meaning the computational effects they describe can be interpreted using the
language of synthetic probability:

50

5.2 Writer

A simple commutative monad is given by the writer monad

WX = R× X

where R has the structure of a commutative monoid. This monad can be thought of as a
generalized measure monad which supports only scoring

score : R→W1, r 7→ (r, ())

but no probabilistic choice (this is reflected in the fact that W is cocontinuous, see Sec-
tion 3.6.4). The writer monad is affine only if R ∼= 1.

5.3 Multisets (Bags)

A multiset or bag is like a set where elements are allowed to appear multiple times, or with
multiplicity. The functor B : Set→ Set defined by

B(X) = { bags on X }

has the structure of a commutative monad given by singletons and unions of bags. In fact, B
is isomorphic to the monad of commutative monoids considered in (7).

The bag monad has been used to model probabilistic databases and stochastic processes
[Dash and Staton, 2021; Jacobs and Staton, 2020]. An element of the composite p ∈ D(B(X))

can be seen as a point process, and DB can be given the structure of a (noncommutative!)
monad on its own right to compose such processes [Dash and Staton, 2020; Jacobs, 2021a].
One can in certain circumstances represent a bag as an N-valued measure, which further un-
derlines the probabilistic reading of this monad and motivates generalizations to measurable
probability (e.g. [Dash and Staton, 2020, 6.1]).

5.4 Negative Probabilities

One can formally compute with negative numbers in place of probabilities, as long as these
numbers sum to 1. Such negative probabilities have occasionally appeared as useful tools
in quantum physics [Feynman, 1987] or queueing theory [Tijms, 2007]. De Finetti’s thereom
(which is of interest to us in Section 10.3) is known to admit a finitary version featuring
negative probabilities [Janson et al., 2016], though we won’t use this further.

As an example, consider the hypothetical joint distribution over coins X, Y given by

Pr(X = 0, Y = 0) = −1
2

Pr(X = 0, Y = 1) =
1
2

Pr(X = 1, Y = 0) =
1
2

Pr(X = 1, Y = 1) =
1
2

Negative probabilities produce curious phenomena through “destructive interference“: Both
variables X, Y almost surely take the value 1, as

Pr(X = 0) = −1
2
+

1
2
= 0 Pr(X = 1) =

1
2
+

1
2
= 1

51

and similarly Pr(Y = 1) = 1. Yet, X and Y are perfectly anticorrelated, as

Pr(X = Y) = Pr(X = 0, Y = 0) + Pr(X = 1, Y = 1) = −1
2
+

1
2
= 0

This challenges classical notions of determinism and independence. Yet negative proba-
bilities form a valid model of categorical probability in the following sense: A signed dis-
tribution over the set X corresponds precisely to a formal affine combination (8), and the
associated monad monad D± is a affine and commutative: Our coin example arises as the
formal affine combination

µ = −1
2
[(0, 0)] +

1
2
[(0, 1)] +

1
2
[(1, 0)] +

1
2
[(1, 0)] ∈ D±(2× 2)

Negative probability will serve as an important counterexample to the ‘dataflow axioms’
of Section 9, which aim to axiomatically describe familiar properties of ordinary probabil-
ity. We will see in Section 26 that name generation and quasi-Borel space probability share
formal similarities with D± despite all probabilities being nonnegative.

5.5 Nondeterminism

The classic primitive for nondeterministic programming is John McCarthy’s amb operator
[Abelson et al., 1996, 4.3.3], which tries out all of its arguments and backtracks once it trig-
gers fail(). Backtracking plus unification (Section 5.6) are the basis for logic programming.

On Set, we model nondeterministic choice by relations in place of functions. The power-
set functor P : Set→ Set with monad structure

ηX(x) = {x}, joinX(A) =
⋃
A

is commutative and provides the nondeterministic primitives fail : 1→ P(1) and amb : 1→
P(2) by

fail = ∅, amb = {true, false}

Note that the generalized integral is precisely existential quantification, e.g. if µ ∈ PX and
f : X → PY then

y ∈
∫

µ(dx) f (x)⇔ ∃x ∈ µ. y ∈ f (x).

The powerset monad is not affine because P1 = {∅, 1}, that is powerset nondeterminism
allows a computation to return multiple or zero results (fail). We can remedy this by taking
the nonempty powerset monad P+ : Set→ Set which forces one or more results.

Both monads admit finitary variants Pf , P+
f of finite and finite nonempty subsets re-

spectively. Those monads correspond to the algebraic theories of ∨-semilattices and ∨-
semilattices with a bottom element. Mathematically, nondeterminism differs from proba-
bility in that mere possibility is recorded; for example, nondeterministic choice (∨) is asso-
ciative while probabilistic choice (+) is not. We elaborate on the relationship between the
two theories in Section 13.3.

52

Aside on supports: It is always possible to collapse probability to possibility. The following
construction is folklore, but we include it for lack of reference

Proposition 5.4 (Possibilistic collapse) Every semilattice can be considered a convex set where
x +p y = x ∨ y for all 0 < p < 1. The inclusion functor SL→ Cvx has a left adjoint (−)sl : Cvx→
SL which identifies all “intermediate mixtures”, e.g. a ∼ b if there are c, d and 0 < p, q < 1 such
that a = c +p d, b = c +q d.

For example [0, 1]sl has three elements, “surely 0”, “surely 1” and “mixture” (0 ∨ 1). As a
left adjoint, the collapse must send free convex sets to free semilattices, and the unit of the
adjunction

D(X)→ P+
f (X), p 7→ {x ∈ X | p(x) > 0}

can be interpreted as taking the support of a distribution (we return to supports in Sec-
tion 8.3).

We briefly note that a topological variant of nondeterminism has been described as Markov
categories in [Fritz and Rischel, 2020]. It serves as a counterexample in Section 9.2, and can
be related to the support of probability measures as another way of collapsing probability to
nondeterminism [Fritz et al., 2019].

5.6 Logic Programming and Unification

A particular form of nondeterminism forms the basis of logic programming languages like
PROLOG: We can present logic variables and unification in the framework of synthetic prob-
ability, following the analysis of Staton [2013a]. The second-order algebraic theory (see Sec-
tion 3.7) in that paper serves as an inspiration for our treatment of conditional probability in
Section 21.2; in Section 20.2 we draw further analogies between improper priors and Prolog.
Outside of Chapter IV, the allocation of fresh logic variables is another example of genera-
tivity just like name generation (Section 5.7) or urn creation (Section 10.3).

Unification is a fundamental operation between symbolic expressions. For example, the
two types

α→ (β→ α) and (int→ int)→ γ

unify by the assignment of type variables

α = int→ int γ = β→ (int→ int).

For a more involved example, we consider the following Prolog implementation of proof
search for the implicational fragment of natural deduction.

% Does Xs contain X?
mem([X|_], X).

mem([_|Xs], X) :− mem(Xs,X).

% Can we derive Ps |- P?
ded(Ps, P) :− mem(Ps, P). % axiom rule

53

ded(Ps, P −> Q) :− ded([P|Ps], Q). % (->) introduction
ded(Ps, P) :− ded(Ps, Q −> P), ded(Ps, Q). % (->) elimination

% ?- ded([a], (a -> b) -> b).
% true.

In order to express the Prolog semantics in a functional language with effects, we make
use of an abstract type term of logic variables (terms in Prolog parlance) admitting a construc-
tor impl : term −> term −> term forming the implication terms (a→ b). We need to explic-
itly invoke unification as an effect (=:=) : term −> term −> unit. Then the Prolog program
can be translated as follows

val mem : term list −> term −> unit
le t rec mem ps q =

match ps with
| [] −> fail()
| (p :: ps) −> i f amb [true; false] then p =:= q else mem ps q

val ded : term list −> term −> unit
le t rec ded ps p =

match amb [1;2;3] with
| 1 −> mem ps p
| 2 −> le t q = free() in le t r = free() in

p =:= impl(q,r); ded (q :: ps) r

| 3 −> le t q = free() in
ded ps (impl(q,p)); ded ps q

In addition to explicit unification, we make use of nondeterminism (amb, fail) to model
Prolog’s disjunctive choice between different rules. The effect free : unit −> term allocates
a new logic variable. The addition of a unification effect to a functional language leads to the
hybrid paradigm of functional-logic programming [Antoy and Hanus, 2010] as exemplified by
the languages Curry [Hanus et al., 2000] and Mercury [Somogyi et al., 1996].

Semantically, the new language constructs are modeled by a strong monad T on a cate-
gory of presheaves (Section 3.7), an object L of terms and effects

∃ : 1→ T(L) (=:=) : L× L→ T(1)

Staton proved that the monad T is commutative6. This not only lets us think of generativity
as a form of randomness, we will later even explore fresh logic variables (∃) as a synthetic
version of improper priors (Section 20.2).

6T cannot be affine as we have nontrivial effects like (=:=) : L× L→ T(1)

54

5.7 Name Generation

Name generation is one of the core examples of this thesis, which we set out to analyze from
a probabilistic viewpoint. A name is an abstract entity which has no properties other than
its identity, that is whether or not it is equal to other names. We can generate fresh names,
that is create a new name which is distinct from all other names. Examples of names are
GUIDs, database IDs or URLs, but also variable names in metaprogramming (gensym), locations
for memory allocation (new) and cluster names in statistics.

This makes name generation the simplest instance of generativity, which is an abundant
phenomenon in computer science; other examples in this thesis are urn creation, latent ran-
dom variables, unification variables and memory cells. A classical semantical model is the
‘name-generation monad’ T on nominal sets7, which we discuss in detail in Section 25.2.

Much of Chapter V is dedicated to investigating the relationship between name gen-
eration and probability. For now, let us state that name generation is a commutative and
discardable probabilistic effect, as reflected in Definition 24.7. Name generation combines
features of probability and nondeterminism. For example, the equation

(let x = fresh() in let y = fresh() in (x = y)) = false (27)

shows that fresh names will be distinct, while nondeterministically chosen names can coin-
cide. As a rule of thumb, a statement about name generation will be true if it holds for some
and equivalently for all suitably fresh names. This ‘some/any’ principle is important [Pitts,
2013b, 3.9] and reminiscent of zero-one laws in probability.

The freshness equation (27) is reminiscent of probabilistic choice from an atomless prob-
ability distribution. For example, if X, Y are sampled independently from a Gaussian dis-
tribution, then Pr(X = Y) = 0. Indeed (27) holds in Meas when we take fresh : 1 → G(R)

to be an atomless probability distribution. Finding probabilistic models of name generation
is achieved in Chapter V. The interest then lies in studying the interaction of name genera-
tion with higher-order function (Section 4.3). For example, the following name-generating
functions are identified

(let x = fresh() in λy.(x = y)) = λy.false (28)

because the name x remains private in the body of the closure. We show that the same equa-
tion holds when interpreted as random higher-order functions (Section 28). This showcases
curious abstract properties of names name generation and higher-order probability shared
with negative probability (Section 26).

6 CD- and Markov Categories

6.1 Definition

Monadic models of probability correspond to probabilistic languages with explicit effects,
thunking and higher-order functions if the underlying category is cartesian closed. A sim-
pler formalism for ground probabilistic programming formalizes categories of stochastic

7for the knowledgeable reader, T is the free restriction set monad, see [Pitts, 2013a, Chapter 9.5]

55

maps directly, in a way reminiscent of Freyd categories. The three probabilistic features
copying, discarding and commutativity are modeled transparently by a symmetric monoidal
category with extra structure. We recall two kinds of structures

CD categories due to [Cho and Jacobs, 2019] which model unnormalised probabilistic com-
putation and

Markov categories due to [Fritz, 2020] which model normalized probabilistic computation

Both theories are phrased in symmetric monoidal categories, and will make use of the
graphical language of string diagrams (Section 3.5). We will also define a programmatic
internal language which is reminiscent of fine-grained call-by-value (Section 7). Markov
categories have been used to formalize various theorems of probability and statistics, such
as sufficient statistics (Fisher-Neyman, Basu, Bahadur) [Fritz, 2020], stochastic dominance
(Blackwell-Sherman-Stein) [Fritz et al., 2020] and zero-one laws [Fritz and Rischel, 2020].
We’ll study them as a foundation for programming language semantics (Section 7), a theory
of conditioning (Chapter IV) and for their dataflow properties (Section 9).

Definition 6.1 (CD category) A copy-delete category (CD category) is a symmetric monoidal
category (C,⊗, I) where every object X is equipped with the structure of a commutative
comonoid

copyX : X → X⊗ X delX : X → I

graphically depicted as

== delXcopyX

satisfying the axioms

=

==
=

We require that the comonoid structure be compatible with the monoidal structure as follows

=

X⊗Y

X⊗Y X

=

Y

X⊗Y

X⊗Y

X Y X Y

X Y

56

It is important that copy and del are not assumed to be natural; explicitly the equations

=f

f f

=

f

(29)

need not hold in general. We’ll give special names to situations where they do hold.

Definition 6.2 (Copyable and discardable morphism) A morphism f : X → Y is called
copyable if

copyY ◦ f = (f ⊗ f) ◦ copyX.

A morphism f : X → Y is called discardable8 if

delY ◦ f = delX.

The appropriate notion of functor between CD categories F : C→ D is a strong symmet-
ric monoidal functor which preserves the comonoid structure in the sense that

FX FX

FX⊗ FX F(X⊗ X) I F(I)

copyFX F(copyX)

∼=

delFX

∼=

F(delX)

The correct notion of natural transformation between these functors is slightly more subtle
and will be discussed in Remark 6.11.

Definition 6.3 (Markov category) A Markov category is a CD category C in which the fol-
lowing equivalent properties hold

(i) C is semicartesian, i.e. I is terminal

(ii) every morphism is discardable

(iii) del is natural

Notation: The presence of explicit copying and discarding maps lets us appropriate
product-like syntax for CD categories: If f : A→ X, g : A→ Y, we write a tupling

〈 f , g〉 def
= (f ⊗ g) ◦ copyA

and define projection maps

πX : X⊗Y → X πY : X⊗Y → Y
8this is sometimes called causal in physics, but that word will have a different meaning in this thesis

57

via discarding. Recall the terminology of states and effects (5) in symmetric monoidal cate-
gories: In Markov categories, all effects X → I are trivial, while they will be relevant in CD
categories.

In Markov categories, we’ll additionally make use of the following probabilistic termi-
nology: If f : A → X ⊗ Y, we define its marginal (on X) fX : A → X as πX f . Of course,
we generally have f 6= 〈 fX, fY〉 unless C is cartesian. We call states µ : I → X distributions,
which lets us think of general morphisms f : A→ X as parametrized distributions.

The comonoid structure allows us to copy and discard variables freely; this lets us in-
terpret CD categories in a nonlinear programming language. We formally introduce the
internal language in Section 7. We argue this is the prototypical probabilistic programming
language. This gives us a total of 3 useful calculi for synthetic probability – ordinary alge-
braic notation, string diagrams and probabilistic programs.

We begin by establishing a selection of key examples for Markov categories.

6.2 Examples of Markov Categories

6.2.1 Kleisli Categories

CD and Markov categories subsume the generalized probability monads from before by con-
sidering their Kleisli categories. This is the same construction as in Proposition 3.2 or [Fritz,
2020, 3.1], but we’ll sketch out the constructions explicitly from a programming perspective.

Proposition 6.4 Let T be a commutative monad on a category C with products. Then the Kleisli
category CT becomes a CD category by inheriting the comonoid structure from (C,×, 1) as

copyX(x) = [(x, x)] delX(x) = [()]

If T is furthermore affine, CT is a Markov category.

PROOF It is known that the Kleisli category is symmetric monoidal if T is commutative. On
objects, tensor is cartesian product

X⊗Y def
= X×Y

while the tensor of Kleisli maps f : X → TY, g : Z → TW is

(f ⊗ g)(x, z) def
= let y ← f (x) in let w ← g(z) in [(z, w)]

Commutativity lets us verify the interchange law. The comonoid laws are evident, and dis-
cardability follows from the affineness of T (15). �

6.2.2 Traditional Models of Probability

All classical models of probability from Section 4 can be presented as Markov categories.
Fritz [2020] has established names for some of them

(i) Stoch is the Kleisli category of the Giry monad on Meas

58

(ii) BorelStoch is the Kleisli category of the Giry monad on Sbs

We could make similar names like for the Kleisli category of the probability monads on Pol,
but will often leave this implicit when the obvious probability monad used.

The category FinStoch consists of finite sets and stochastic matrices between them. Note
that a stochastic matrix is the same as a Kleisli arrow X → D(Y) for the distribution monad,
but FinStoch is not formally a Kleisli category because D(Y) is not finite. Similarly FinSetMulti

(an example of nondeterminism) consists of finite sets and Kleisli arrows X → P+(Y) for
the nonempty powerset monad.

The category SfKer of s-finite kernels is a CD category which is not known to be of Kleisli
form. All measure-theoretic examples in this thesis are in fact CD subcategories of SfKer. An
interesting avenue of research is to identify well-behaved subcategories which may admit
a compact description without any measure theory, and enjoy stronger formal properties:
Crucial examples are the Beta-Bernoulli process (Chapter III) and Gaussian probability (Def-
inition 18.2). The category of quasi-Borel spaces Section 27 on the other hand conservatively
extends standard Borel probability with a function space construction.

6.2.3 Categories of Comonoids

A conceptually interesting class of Markov categories is obtained as follows: Let D be a sym-
metric monoidal category and C = CComon(D) be the category of commutative comonoids
in D, i.e. triples (X, µX, eX) with µ : X → X ⊗ X and eX : X → I satisfying the usual
equations. Morphism in C are all counit-preserving maps f : X → Y, i.e. eX = eY f . Then
C is symmetric monoidal and each object (X, µX, eX) is equipped with a comonoid struc-
ture, namely its very own (µX, eX). The monoidal structure is affine because morphisms are
assumed counit-preserving. This makes C into a Markov category [Fritz, 2020, Section 9].

Dually, if C is a category of commutative monoids and unital maps, its opposite category
Cop will be a Markov category. This fits well with the functional-analytic approach from Sec-
tion 4.4. C*-algebras are monoids of sorts (equipped with a multiplication) and the opposite
categories MIUop and PUop are Markov categories of (continuous) deterministic and proba-
bilistic computation respectively. Recall that deterministic computation is characterized by
preserving the multiplication; this is precisely the (dual) definition of determinism which we
will introduce Section 6.3.

6.2.4 Aside on Semicartesian Theories

As a small digression, we mention that there exist variations of synthetic probability theory
which are even more general than Markov categories. For example, for the purposes of quan-
tum computation, information cannot be copied but it can be discarded in a unique way. A
theory in the sense of Houghton-Larsen [2021] is a semicartesian monoidal category, without
any supply of comonoids. An crucial example is the category QIT (for quantum information
theory) of finite-dimensional C*-algebras and completely positive trace-preserving maps. It
turns out that several concepts in Markov categories have equivalent formulations which
generalize to a purely semicartesian setting. In particular, the concept of dilation has similar-
ities to our developments of Leak and Cond in Section 19 and promises to be an interesting av-
enue of investigation. We refer to [Staton, 2015] for a presentation of quantum computation

59

using a linear variant of second-order algebra and to [Huot and Staton, 2018; Heunen and
Kaarsgaard, 2021] for further categorical background. For another way to combine Markov
categories and quantum computation see [Parzygnat, 2020].

6.3 Determinism

The following definition is so crucial to the theory of CD and Markov categories that we will
discuss it before defining the internal language. Let C be a CD category:

Definition 6.5 (Fritz [2020, 10.1]) We call a morphism f : X → Y deterministic if it is copyable
and discardable (Definition 6.2), that is the equations (29) hold. If C is a Markov category,
discardability is automatic, so determinism is the equation

f f

=

f

A morphism f : X → Y is deterministic if and only if it is a comonoid homomorphism
(X, copyX, delX) → (Y, copyY, delY). We recall that respecting comonoid structure is pre-
cisely the dual of the condition witnessed in the C*-algebra formalism (Section 4.4): A PU
map f : C(Y) → C(X) represents a stochastic map, and that map is deterministic iff it re-
spects the multiplication (monoid structure).

In programming terms, deterministic expressions behave like values: Running an effect-
ful expression twice is the same as running it once and reusing the result; not running the
expression (discarding it) has no effect.

It is easy to show that deterministic morphisms are closed under composition and that all
structure maps of C are deterministic. We write Cdet for the wide subcategory of C consisting
only of deterministic morphisms. It is easy to see that a Markov category is cartesian if and
only if every morphism is deterministic. It immediately follows that Cdet is itself a cartesian
subcategory.

Synthetic probability theory can thus be seen as studying the ability of computation to
produce nontrivial correlations: If T is a computational monad that preserves products, i.e.
T(X×Y) ∼= T(X)× T(Y), then its Kleisli category is cartesian, hence making it uninteresting
from a probabilistic viewpoint, because every morphism is deterministic. We study further this
difference between determinism and purity (effect-freeness) in Kleisli categories.

Determinism versus purity: From the programming perspective, deterministic compu-
tations behave like values. It is important to note that there are other notions of value-
hood which may not agree with determinism. In a Kleisli category, we call a morphism
f : X → TY pure if it factors through the unit, i.e. f = ηY ◦ f0 for f0 : X → Y. Every pure

60

morphism is deterministic, because by a simple calculation in the monadic metalanguage

let y ← f (x) in [(y, y)] = let y ← [f0(x)] in [(y, y)]

= [(f0(x), f0(x)]

= let y1 ← [f0(x)] in let y2 ← [f0(x)] in [(y1, y2)]

= let y1 ← f (x) in let y2 ← f (x) in [(y1, y2)]

The converse to this need not hold, as the following example in measurable spaces shows:

Proposition 6.6 (Fritz [2020, 10.4]) In Stoch, a probability measure µ ∈ G(X) (seen as a mor-
phism 1→ X) is deterministic iff it is zero-one valued, i.e. µ(A) ∈ {0, 1} for all A ∈ ΣX.

On a standard Borel space, every {0, 1}-valued measure must be a Dirac measure. This
need not be the case for more exotic σ-algebras – a canonical example is given as follows

Example 6.7 Let X be an uncountable set and ΣX consist of those subsets of X that are
countable or co-countable. Then ΣX is a σ-algebra and we have a probability measure
ν : ΣX → [0, 1] given by

ν(A) = [A is cocountable].

Because ν(A) ∈ {0, 1}, this measure is deterministic as state 1 → X in Stoch by Proposi-
tion 6.6, but it is not pure.

The measure ν has aspects reminiscent of fresh name generation, so we’ll revisit it in Sec-
tion 26.3. However X is not a suitable domain for name generation, because the equality
test (=) : X × X → 2 is not measurable: if it was, we would obtain an easy contradiction,
because by determinism of ν we compute in the monadic metalanguage

(let x ← ν in let y ← ν in [x = y]) = (let x ← ν in [x = x]) = [true]

while on the other hand ν({x}) = 0 implies that

(let x ← ν in let y ← ν in [x = y]) = (let x ← ν in [false]) = [false]

The non-pathological case in which determinism coincides with purity has been called
representability [Fritz et al., 2020]. The condition that the only deterministic distributions are
Dirac is easily translated into a pullback condition:

Definition 6.8 (Fritz et al. [2020, 3.4]) A commutative and affine monad T satisfies the repre-
sentability condition if the following square is a pullback for every X.

X TX

TX× TX T(X× X)

δX

〈δX ,δX〉

⊗

T(〈idX ,idX〉)

y

(30)

61

Proposition 6.9 (Fritz et al. [2020, 3.4]) Let T satisfy the representability condition (30), then a
Kleisli morphism f : X → TY is deterministic if and only if it is pure.

Proposition 6.10 The following monads satisfy the representability condition

(i) the distribution monad D

(ii) the nonempty finite powerset monad P+
f

(iii) the Giry monad on standard Borel spaces

The Giry monad on Meas does not satisfy the representability condition.

PROOF The first two results follow from Fritz et al. [2020, 3.6], applied to the ‘entire semir-
ings’ [0, ∞) and {0, 1}. The result for the Giry monad on Sbs is [Fritz, 2020, 10.5]. The Giry
monad on Meas fails the representability condition because of Example 6.7. �

CD versus Freyd categories: We finish with a remark on the relation between CD cate-
gories and Freyd catgories (Section 3.4). Following [Fritz, 2020, 10.19], we see that for every
CD category C, the inclusion Cdet → C is a commutative Freyd category. Conversely, every
object in a commutative Freyd category J : V → C has a canonical comonoid structure in-
duced by the cartesian structure on V. These constructions are in general not inverses of each
other, as seen when V→ VT is the Freyd category for a monad violating the representability
condition. In that case, (VT)det is strictly larger than V.

To summarize, a Freyd category V → C comes equipped with a notion of effect-free
morphism, while in a CD category, determinism is a derived notion. We consider the differ-
ences between these approaches minor. Freyd categories might be conceptually cleaner, but
the definition of a CD category is simpler because there is only one sort of morphism. This
makes the internal language of CD categories (Section 7) more naturally expressible in direct
style than fine-grained call-by-value. Furthermore, because determinism (unlike valueness)
is determined equationally, one can in fact prove nontrival theorems to the effect that certain
morphisms are deterministic, e.g. in the formulation of categorical zero-one laws [Fritz and
Rischel, 2020].

Remark 6.11 The notion of determinism is important to define equivalence of CD categories:
We must ask that the components of a natural transformations between CD functors are
deterministic [Fritz, 2020, 10.14]. This is because isomorphisms in a CD categories need not
be deterministic (Example 9.8). This is however regarded a pathological situation which will
not occur in common circumstances (Proposition 9.9).

7 Internal Language of CD Categories

In this section, we introduce the CD calculus, which is the internal language of CD and
Markov categories. We’ll argue that this is the prototypical backbone of a ground prob-
abilistic programming language. This connects the developments on Markov categories,
primarily found in mathematics literature, directly to computer science. We obtain three
formalisms for synthetic probability which are freely convertible into each other, having the
same expressive power but different strengths and weaknesses:

62

(i) plain categorical notation

(ii) string diagrams

(iii) CD calculus

Categorical notation is the most explicit but also most verbose of the formalisms, explic-
itly featuring all coherence, copy and delete operations. String diagrams hide the coherence
and allow intuitive global geometric reasoning, while still being explicit about copying and
deleting information. In a programming language, even copying and deleting is implicit in
the nonlinear use of variables in context. Nonetheless, explicit control over variable scope
can be achieved through nested lets.

As an example, we compare the definition of parameterized conditionals (Definition 8.13)
as a commutative diagram

A A⊗ A (X⊗Y)⊗ A (X⊗ I)⊗ A X⊗ A

(X⊗ X)⊗ A

X⊗ (X⊗ A)

A X⊗Y
f

copyA f⊗A (X⊗delY)⊗A ρX⊗A

copyX⊗A

αX,X,A

X⊗ f |X

string diagram
X

f|X

=f
f

A

X Y
Y

A
and program equation

a : A ` let (x, y) = f (a) in (x, f |X(x, a)) ≡ f (a) : X ∗Y

There are several further formalisms which translate into the above, like statistical no-
tation (Section 4) and directed graphical models. For example, the independence structure9

conveyed by the graphical model

A B

C

9as will be clarified in Section 8.1

63

translates into the following string diagram

A C B

We refer to [Fong, 2012] for more information. Not every string diagram comes from a
directed model. An important obstruction is that all variables are public, for example in
the model

X ∼ ψ

Y ∼ f (X)

it is impossible to consider the variable Y in isolation of X. In the other hand, nested lets

let y = (let x = ψ in f (x)) in · · ·

or string diagrams

ψ

f

ψ

f

X

Y Y

=

X

give us precise control over the scope of random variables. This is important in the analysis
of subtle phenomena like nonpositivity and leaking (Sections 9 and 30.5).

Lastly, we notice that in [Fritz, 2020, 2.8], the author formally extends the kernel notation
p(y|x) from (19) to arbitrary morphisms in Markov categories. A morphism f : A ⊗ B →
X ⊗ Y would be written f (x, y|a, b) where the vertical bar serves no further formal function
than separating inputs and outputs. Composition is denoted using the synthetic analogue
of the Kolmogorov-Chapman equation

(g f)(z|x) = ∑
y

g(z|y) f (y|x) (31)

One might even omit the summation sign following Einstein summation convention. This
notation has not been formalized and we won’t use it in what follows. However, we point
out some interesting features: Variables may be used nonlinearly in the inputs of morphisms;
for example p(z|x, x) translates to p ◦ copyX. However, variables must be used linearly in
the outputs, for example the expression q(y, y, |x) is meaningless. We’ll briefly revisit this in
Section 20.2 in relation to conditioning and unification in Prolog.

64

Technically an internal language for CD categories is the ground fragment of the Moggi’s
λC-calculus (Section 3.3) extended with a commutativity equation (Figure 1). It can equiva-
lently be described by the ground fragment of fine-grained call-by-value plus commutativity,
which is unsurprising given the relationship between CD categories and Freyd categories.
We choose to give an independent presentation of the language for the following reasons

(i) the CD calculus has a single judgement unlike the separate computation and value
judgement of fine-grained call by value. Accordingly, unlike Freyd categories, a CD
category does not come equipped with a notion of value subcategory, but instead,
value-like terms are recovered as deterministic ones. The relation between determinism
and effect-freeness has been addressed in Section 6.3

(ii) fine-grained call-by-value makes sequencing information completely explicit in an al-
most CPS-like manner. In a commutative calculus, this information is redundant, mak-
ing direct style more a natural fit. In fact, picking an evaluation order introduces arbi-
trary choices.

(iii) unlike premonoidal categories, commutativity unlocks string diagrams, allowing a
definition of our semantics in string-diagrammatic terms

(iv) the restriction to the ground fragment of λC plus commutativity allows us to subsume
much of the theory of the λC calculus under two general axiom schemes for substitu-
tion. The theory of the CD calculus is thus particularly simple and interesting in its
own right.

Definition A CD signature S = (τ, ω) consists of sets τ of base types and function symbols
ω. A type is recursively defined by closing the base types under tuple formation

A ::= τ | unit | A ∗ A

Each function symbol f ∈ ω is equipped with a unary arity of types, written f : A→ B. The
terms of the CD-calculus are given by

t ::= x | () | (t, t) |πi t | f t | let x = t in t (i = 1, 2)

subject to the typing rules x1 : A1, . . . , xn : An ` t : B given in Figure 1.

Γ, x : A, Γ′ ` x : A Γ ` () : unit

Γ ` s : A Γ ` t : B
Γ ` (s, t) : A ∗ B

Γ ` t : A
Γ ` f t : B

(f : A→ B)

Γ ` t : A1 ∗ A2

Γ ` πi t : Ai

Γ, x : A ` t : B Γ ` e : A
Γ ` let x = e in t : B

Figure 1: Typing rules for the CD calculus

65

Syntactic sugar We employ standard syntactic sugar, for example sequencing

s; t def
= let x = s in t (x /∈ fv(t))

We also define a pattern-matching let as syntactic sugar

(let (x, y) = s in t) def
= (let p = s in let x = π1 p in let y = π2 p in t)

from which we can provably recover the projection constructs once we discussed the theory
Section 7.1.

(π1 s) = (let (x, y) = s in x)

(π2 s) = (let (x, y) = s in y)

We prefer the projections over pattern-matching when presenting the equational theory, be-
cause this means one less binding construct.

7.1 Equational Theory

In call-by-value languages, the substitution

(let x = e in u) ≡ u[e/x]

is generally only admissible if e is a value. In the CD calculus, another powerful substitution
scheme is valid: We can replace (let x = e in u) ≡ u[e/x] whenever u uses x linearly, i.e.
exactly once, even if e is an effectful computation. Whenever we say “use” or “occurrence”,
we mean free use and occurrence. Substitution is always capture-avoiding.

The linear substitution scheme becomes invalid in the presence of non-commutative ef-

fects like printing, say e def
= print(1) and u def

= (let y = print(2) in x) where

let x = print(1) in let y = print(2) in x 6≡ let y = print(2) in print(1)

Similarly the scheme is invalidated in the presence of higher-order constructs like λ-abstraction

or thunks, e.g e def
= rnd(), u def

= λy.x as

let x = rnd() in λy.x 6≡ λy.rnd()

Using the linear- and value substitution schemes, the theory of the CD calculus can be
presented concisely as in Figure 2. Note that we omit the context of equations when unam-
biguous and identify bound variables up to α-equivalence. The theory is given

Proposition 7.1 All axioms of the ground λc-calculus and commutativity are derivable.

(let x2 = (let x1 = e1 in e2) in e) ≡ (let x1 = e1 in let x2 = e2 in e) x1 /∈ fv(e) (assoc)

(let x1 = e1 in let x2 = e2 in e) ≡ (let x2 = e2 in let x1 = e1 in e) x1 /∈ fv(e2), x2 /∈ fv(e1)

(comm)

(let x = e in x) ≡ e (id)

(let x1 = x2 in e) ≡ e[x2/x1] (let.β)

f e ≡ (let x = e in f x) (let.f)

(s, t) ≡ (let x = s in let y = t in (x, y)) (let.∗)

66

≡ is reflexive, symmetric and transitive (equiv)

e1 ≡ e′1 e2 ≡ e′2
(let x = e1 in e2) ≡ (let x = e′1 in e′2) (let.ξ)

A value is a term of the form

V ::= x | () | (V, V) |πiV | let x = V in V

The axioms of the CD calculus are

(let x = e in t) ≡ t[e!x] (let.lin)

(let x = V in t) ≡ t[V/x] (let.val)

πi (x1, x2) ≡ xi (∗.β)

(π1 x, π2 x) ≡ x (∗.η)

x ≡ () (unit.η)

where we write t[x!e] for substituting a unique free occurrence of x. For the internal language of
Markov categories, extend (let.lin) to all substitutions targeting at most one free occurrence of x.

Figure 2: Axioms of the CD-calculus

Note that by commutativity (comm), the order of evaluation in (let.∗) does not matter.

PROOF We will invoke (let.ξ) implicitly throughout. (let.β) follows immediately from (let.val)
because x2 is a value. (id), (let.f), (let.∗) follow by applying (let.lin) one or two times.

For (comm), we notice that because x2 /∈ fv(e1), the expression let x1 = e2 in let x2 = x2 in e
has a unique free occurrence of x2, hence by linear substitution

let x2 = e2 in let x1 = e1 in e
(let.β)
≡ let x2 = e2 in let x1 = e1 in let x2 = x2 in e

(let.lin)
≡ let x1 = e1 in let x2 = e2 in e

For (assoc), if x1 /∈ fv(e) then let x2 = (let x1 = x1 in e2) in e has a unique free occurrence of
x1, hence

let x1 = e1 in let x2 = e2 in e
(let.β)
≡ let x1 = e1 in let x2 = (let x1 = x1 in e2) in e

(let.lin)
≡ let x2 = (let x1 = e1 in e2) in e �

Linear substitution lets us control general nonlinear substitution in the following way:
If t has n free occurrences of the variable x, let t̂ denote the term t with those occurrences
replaced with distinct fresh variables x1, . . . , xn (their order does not matter). By repeated
application of (let.val), we have

t ≡ let x1 = x in · · · let xn = x in t̂ (32)

67

We can now substitute some or all occurrences of x using (let.lin) as follows

t[e/x] ≡ t̂[e!x1] · · · [e!xn] ≡ let x1 = e in · · · let xn = e in t̂ (33)

This means we can reduce questions about substitution to the copying behavior of the term
e. We adapt the definitions from [Führmann, 2002; Kammar and Plotkin, 2012].

Definition 7.2 A term e is called copyable if

(let x = e in (x, x)) ≡ (e, e) (34)

is derivable. A term e is called discardable if

(let x = e in ()) ≡ () (35)

is derivable. We call e deterministic if it is both copyable and discardable.

Proposition 7.3 The substitution equation

(let x = e in t) ≡ t[e/x]

is derivable in any of the following circumstances:

(i) t uses x exactly once

(ii) t uses x at least once, and e is copyable

(iii) t uses x at most once, and e is discardable

(iv) e is deterministic

PROOF The first case is (let.lin) and the last case follows from the combination of the previ-
ous ones.

Copyable We begin with the special case that t has precisely two occurrences of x. Then

t[e/x]
(33)
≡ let x1 = e in let x2 = e in t̂

(let.val),(∗.β)
≡ let p = (e, e) in let x1 = π1 p in let x2 = π2 p in t̂

(34)
≡ let p = (let x = e in (x, x)) in let x1 = π1 p in let x2 = π2 p in t̂

(assoc)
≡ let x = e in let p = (x, x) in let x1 = π1 p in let x2 = π2 p in t̂

(let.val),(∗.β)
≡ let x = e in let x1 = x in let x2 = x in t̂

(33)
≡ let x = e in t

Repeating this process, any chain of repeated let bindings of a copyable term e

let x1 = e in · · · let xn = e in . . .

can be replaced by
let x = e in let x1 = x in · · · let xn = x in . . .

68

Discardable Let t have no free occurrence of x, and e be discardable. Then

let x = e in t
(let.val)
≡ let x = e in let y = () in t

(assoc)
≡ let y = (let x = e in ()) in t
(35)
≡ let y = () in t

(let.val)
≡ t �

7.2 Semantics

Every CD category models the CD calculus in a way that validates the axioms of the theory.
Formally, a model of signature (τ, ω) is a CD category C together with an assignment of
objects JAK ∈ C for each basic type and morphisms J f K : JAK → JBK for each function
symbol f : A→ B. Here we extend J−K to arbitrary types and contexts by

JunitK = I JA1 ∗ A2K = JA1K⊗ JA2K JA1, . . . , AnK = JA1K⊗ · · · ⊗ JAnK

For any model, the interpretation of a term Γ ` t : A is defined recursively as

• JxK is the discarding map JΓ, A, Γ′K ∼= JΓK⊗ JAK⊗ JΓ′K→ I ⊗ JAK⊗ I ∼= JAK

• J()K is the discarding map delJΓK : JΓK→ I

• J(s, t)K is the map JΓK
copyJΓK−−−−→ JΓK⊗ JΓK

JsK⊗JtK−−−−→ JAK⊗ JBK = JA ∗ BK

• JπitK is marginalization JΓK
JtK−→ JA1K⊗ JA2K→ JAiK

• J f tK is the composite JΓK
JtK−→ JAK

J f K−→ JBK

• Jlet x = e in tK is given by JΓK
copyJΓK−−−−→ JΓK⊗ JΓK

idJΓK⊗JeK
−−−−−→ JΓK⊗ JAK

JtK−→ JBK

Semantics can be seen as a procedure for translating every term into a string diagram as
follows, where we omit brackets for readability.

=x

Γ X Γ′

() =

Γ

f t =

Γ

t

f

69

t(s, t) =

Γ

s π1 t =
t

Γ

let x = e in t = e

Γ

t

Proposition 7.4 (Structural rules) Weakening and exchange are implemented through discarding
of variables, and swap isomorphisms respectively.

PROOF Straightforward induction using the comonoid axioms. �

Proposition 7.5 (Soundness) Every CD model validates the axioms of the CD calculus. That is if
Γ ` e1 ≡ e2 : A then Je1K = Je2K : JΓK→ JAK.

PROOF The proofs are straightforward if tedious string diagram manipulations. We show-
case the validation of one interesting equation, (assoc), here and move the remaining deriva-
tions to the appendix (Section 31). Let Γ ` e1 : X1, Γ, x1 : X1 ` e2 : X2 and Γ, x2 : X2 ` e : Y.
Then

(let x1 = e1 in let x2 = e2 in ew) ≡ (let x2 = (let x1 = e1 in e2) in e)

translates to the following equation in string diagrams

Γ

e2

e1

e

=

Γ

e1

e2

e

Γ

e1

e2

e

==

Γ

e1

e2

ew

Γ X1
X2

(36)

Note that we formally write ew to emphasize the weakening of e; its denotation discards the
unused X1-wire as per Proposition 7.4. �

70

7.3 Syntactic Category

Every string diagram can be turned into a program, and the theory of ≡ proves all ways of
reading a diagram equivalent. Fix a signature S.

Definition 7.6 The syntactic category Syn consists of the following data

(i) objects are types A

(ii) morphisms are equivalence classes of terms x : A ` t : B modulo ≡

(iii) identities are variables x : A ` x : A

(iv) composition is let binding; if x : A ` s : B and x : B ` t : C, their composite is

x : A ` let x = e in t

Composition is well-defined because of (let.ξ), and the category axioms follow from (let.val),
(let.lin), (assoc). Note that formally, the free variable of morphisms is the fixed choice x, but
we’ll allow slight abuse of notion by allowing α-renaming.

Proposition 7.7 Syn can be given the structure of a CD category (as below).

PROOF Tensor on objects is defined as A ⊗ B = A ∗ B with unit type unit. The tensor on
morphisms of x1 : A1 ` s1 : B1, x2 : A2 ` s1 : B2 is

x : A1 ∗ A2 ` let x1 = π1 x in let x2 = π2 x in (s1, s2)

This defines a symmetric monoidal structure with coherence terms

αA,B,C = x : (A ∗ B) ∗ C ` (π1(π1(x)), (π2(π1(x), π2(x)))) : A ∗ (B ∗ C)

α−1
A,B,C = x : A ∗ (B ∗ C) ` ((π1(x), π1(π2(x)), π2(x))) : (A ∗ B) ∗ C

ρA = x : A ∗ unit ` π1(x) : A

ρ−1
A = x : A ` (x, ()) : A ∗ unit

swapA,B = x : A ∗ B ` (π2x, π1x) : A ∗ B

CD structure is given by the terms

copyA = x : A ` (x, x) : A ∗ A

delA = x : A ` () : unit

The verification of the CD category axioms is tedious but standard. Note that we can build
on existing work because our axioms prove all equations of the ground fragment of λc

(Proposition 7.1). �

We expect that the syntactic category is an initial model over a given signature and the
definition of the semantics J−K is forced by preserving CD structure, but we won’t formalize
this here.

71

8 Concepts of Synthetic Probability

8.1 Independence

Stochastic independence is expressed in Markov categories by composing computation in
parallel (independently) using the tensor product. The presence of parameters leads to the
notion of conditional independence, of which we distinguish two flavors: Independence given
inputs and given outputs. An early categorical formulation of these concepts can be found
in [Coecke and Spekkens, 2012].

Independence given Inputs

Proposition 8.1 (Fritz [2020, 12.11]) In a Markov category, the following are equivalent for f :
A→ X⊗Y

(i) there exist morphisms g : A→ X and h : A→ Y such that f = 〈g, h〉, i.e.

g h
=f

X Y

A A

(ii) f is the product of its marginals f = 〈 fX, fY〉, i.e.

=f

X Y

A A

f f

PROOF (ii) of course implies (i). For the converse, we observe the following equality

=
g h

g h g h

�

72

Definition 8.2 (Fritz [2020, 12.12]) A morphism f : A → X ⊗ Y displays the conditional inde-
pendence X⊥Y || A if the equivalent conditions of Proposition 8.1 hold.

If f is understood, we will speak of X, Y as conditionally independent. In programming
syntax, conditional independence takes the form of independent lines of code, i.e. we can
obtain the variables x, y from expressions g, h such that x /∈ fv(h), y /∈ fv(g) as

f = (let x = g in let y = h in (x, y))

In the distribution case A = I, conditional independence reduces to plain independence:
ψ : I → X⊗Y displays the independence X⊥Y if µ is a product distribution, i.e.

ψ = ψX ⊗ ψY.

Remark 8.3 In cartesian Markov categories, all morphisms f : A → X × Y display the con-
ditional independence X⊥Y || A. Note that a morphism f : A → X is deterministic if and
only if its output is “independent of itself” in the sense that copyX ◦ f displays the condi-
tional independence X⊥X || A.

Note that the double bar “ || ” indicates conditional independence from the parameter or
input A. This is conceptually different from conditional independence of an output, which is
written with a single bar ‘ | ’.

Independence given Outputs

Definition 8.4 (Fritz [2020, 12.1], Cho and Jacobs [2019, 6.9(2)]) A distribution ψ : I → X ⊗
W ⊗ Y displays the conditional independence X⊥Y |W of X, Y given the output W if there
exist φ : I →W, f : W → X, g : W → Y such that

φ

f g=

ψ

XWY WX Y

where the triple-copy stands for any repetition of copying operations, which are all equal by
associativity. The distribution φ must equal the marginal ψW . Note that f , g act as conditional
distributions given W as in Section 8.4. The combinatorial relationship of this notion of con-
ditional independence to graphical models in terms of “semigraphoids” has been discussed
in [Fritz, 2020, Section 12] and [Coecke and Spekkens, 2012, Section 5].

8.2 Almost-sure Equality, Absolute Continuity and Supports

It is perhaps surprising that the notions of equality almost everywhere and absolute conti-
nuity (Definition 4.6) have elegant abstract characterizations in Markov categories. We can
also use these to develop a synthetic notion of the support of a distribution.

73

Definition 8.5 ([Cho and Jacobs, 2019, 5.1], Fritz [2020, 13.1]) Let µ : I → X be a distribu-
tion. Parallel morphisms f , g : X → Y are called µ-almost surely equal (written f =µ g) if

〈idX, f 〉µ = 〈idX, g〉µ

This is stronger than demanding f , g have the same pushforward f µ = gµ, because a copy of
X is leaked (cf. Section 30.5) alongside. The expression 〈idX, f 〉µ is reminiscent of the graph
of a deterministic function f .

Example 8.6 The synthetic definition recovers the intended meaning in familiar cases

(i) In FinStoch, f , g : X → D(Y) are µ-almost surely equal if the distributions f (x) = g(x)
agree for all x with µ(x) > 0

(ii) In BorelStoch, f , g : X → G(Y) are µ-almost surely equal if f (x) = g(x) as measures
for µ-almost all x.

PROOF In [Fritz, 2020, 13.2] and [Fritz et al., 2020, 3.19]. �

Absolute continuity can be naturally phrased in terms of almost-sure equality:

Definition 8.7 (Fritz et al. [2020, 2.8]) Given two distributions µ, ν : I → X, we say that µ is
absolutely continuous with respect to ν, written µ� ν, if for all f , g : X → Y we have

f =ν g implies f =µ g

Example 8.8 (Fritz et al. [2020, 2.9]) In BorelStoch, this recovers the standard notion of abso-
lute continuity (Definition 4.6), i.e. µ � ν if and only if for all measurable sets A, ν(A) = 0
implies µ(A) = 0.

On the one hand, almost-sure equality and absolute continuity are simple categorical
properties which naturally appear in many manipulations: Absolute continuity lets us strengthen
statements about almost-sure equality to actual equality. For example if f =µ g and x � µ

then f x = gx. This will be a crucial ingredient in our theory of conditioning in (Section 18).
On the other hand,�will often have a useful geometric interpretation, which motivates

us to adopt the following terminology:

Convention 8.9 If x : I → X is a deterministic state and x � µ, we will informally say that x
lies in the support of µ.

Examples will be discussed in detail in Proposition 18.6, but for example in BorelStoch, we
have x � µ if and only if µ({x}) > 0. The notion of support depends on a the surrounding
category. Restricting to a smaller Markov category like in Proposition 18.5 may give rise to
more instances of �. Convention 8.9 will be our main formal meaning when speaking of
‘supports’ in this thesis, such as in Definition 19.4.

We will now outline a stronger notion of ‘support’ due to Fritz [2020], which may exist
in a Markov category. To set this apart from Convention 8.9, we will sometimes refer to
the stronger notion as ‘representable supports’. The existence of these supports is often a
prohibitively strong assumption, while the relation� is applicable to any Markov category.
We will therefore phrase our theory of conditioning (Chapter IV) in terms of� only.

74

8.3 Representable Supports

As explained above, supports are way of reducing questions about almost-sure equality to
actual equality. This leads to the following categorical definition of support:

Definition 8.10 (Fritz [2020, 13.20]) Let C be a Markov category and µ : I → X be a distri-
bution. There is a functor Hµ : C→ Set given by equivalence classes of morphisms modulo
µ-almost sure equality

Hµ(Y)
def
= C(X, Y)/=µ

with functorial action given by postcomposition

Hµ(f)([g]) = f · [g] def
= [f g]

A (representable) support for µ is a representation of the functor Hµ, that is a pair (S, α) of an
object S and a natural isomorphism

α : C(S,−) ∼= Hµ

As usual for representing objects, the pair (S, α) is unique up to unique isomorphism.
We elaborate on the definition by giving an explicit characterization of supports using a
Yoneda-style argument.

Proposition 8.11 To give a support for µ : I → X is to give morphisms

i : S→ X p : X → S (37)

such that

(i) for all f , g : X → Y we have f =µ g⇔ f i = gi

(ii) pi = idS

(iii) ip =µ idX

PROOF Given α : C(S,−) ∼= Hµ, consider αS(idS) ∈ Hµ(S) and pick any representative

p : X → S for it. Let i def
= α−1

X ([idX]). The naturality equations for α, α−1 state that for every
g : X → Y and h : S→ Y we have

αY(h) = αY(h ◦ idS) = h · [p] = [hp]

α−1
Y ([g]) = α−1(g · [idX]) = gi

From the latter equation, we can conclude that if [f] = [g] then f i = gi. From the bijectivity
of the transformations

idX = α−1
X (αX(idX)) = idX pi = pi

[idX] = αX(α
−1
X ([idX])) = [idXip] = [ip]

hence ip =µ idX. Therefore if f i = gi then f ip = gip hence f =µ g. �

75

Example 8.12 (Fritz [2020, 13.23]) In FinStoch, the support of µ : I → X is

S = {x ∈ X : µ(x) > 0}

More precisely, i is the deterministic inclusion i : S ↪→ X and p any retraction of it.

The support of multivariate Gaussian distributions N (~µ, Σ) on Rn, as formalized in
the Markov category Gauss (Definition 18.2), will indeed turn out to be the affine subspace
{~µ + Σ~x |~x ∈ Rn} as expected (Proposition 18.5). On the other hand, supports do not exist
in BorelStoch (Proposition 18.6). This is consistent with our slogan from the introduction that
smaller Markov categories admit stronger universal properties.

Remark: Following up on Convention 8.9, the existence of representable supports is
generally too strong an assumption to require. It is often sufficient to work with the absolute
continuity relation x � µ for x : I → X deterministic. If a support i : S → X of µ exists, this
condition simplifies to checking that x factors through S, which can be seen as follows

• x factors through i if and only if x = ipx.

• Assume x = ipx and consider morphisms with f =µ g, then by (i) f i = gi hence
f x = f ipx = gipx = gx. Because f , g were arbitrary, we conclude x � µ.

• Conversely, assume x � µ, then by (iii) we have ip =µ idX hence by absolute continu-
ity ip =x idX, so ipx = x, so x factors through i.

8.4 Conditionals

Conditioning means recovering a joint distribution only given access to part of its informa-
tion. Its categorical formulations trace back to Golubtsov and Cho-Jacobs.

Definition 8.13 (Fritz [2020, 11.1]) A conditional distribution for ψ : I → X ⊗ Y (given X) is a
morphism ψ|X : X → Y such that

ψ

=

ψ

ψ|X
X Y

X Y

(38)

A (parameterized) conditional for f : A→ X⊗Y is a morphism f |X : X⊗ A→ Y such that

X

f|X

=f
f

A

X Y
Y

A

(39)

76

Parameterized conditionals can again be specialized to conditional distributions by fix-
ing a parameter

Proposition 8.14 If f : A → X ⊗ Y has conditional f |X : X ⊗ A → Y and a : I → A is a
deterministic state, then f |X(idX ⊗ a) is a conditional distribution for f a.

PROOF Using determinism of a, we check that

a

f

=

f |X
a

X Y

f

f |X

X Y

a

=

X Y

a

f

�

Conditionals allow to recover the joint distribution from only one marginal. The exis-
tence of conditionals is a very strong property of a Markov category: Given a joint distribu-
tion over X, Y, they allow us to form a generative story whereby X is sampled first, and Y
is then sampled dependent on X. If the conditional on Y exists, we can similarly imagine
Y sampled first. In programming terms, conditionals are a powerful way of restructuring
dataflow to our liking.

Disintegration Fritz [2020, 11.17] gives an equivalent formulation of conditionals using
a different shape of diagram. A disintegration of a morphism p : A → X with respect to
f : X → Y is a morphism s : A⊗Y → X such that

p

f

s

=

p

f

This corresponds to the usual definition of disintegration or regular conditional probability
in Stoch [Fritz, 2020, 11.18]. Because conditionals and disintegrations are interdefinable, we

77

will make no further use of that definition and sometimes speak of disintegration as a syn-
onym to conditioning.

Conditionals are not unique. However we note that if ψ|X, ψ|′X are two morphisms satis-
fying (38) then we obtain immediately from the definitions that

ψ|X =ψX ψ|′X (40)

That is, conditional distributions are unique almost surely with respect to the marginal ψX of
the variable we conditioned on. We will give a detailed account of how to use the categorical
machinery to build a programming language with conditioning in Section 18.

Proposition 8.15 FinStoch, BorelStoch and nondeterminism have conditionals.

PROOF In FinStoch, conditionals are given by the traditional conditional distribution [Fritz,
2020, 11.2]

ψ|X(y|x) =
ψ(x, y)
ψ(x)

, π(x) > 0

Note that this is defined on the support of ψX only (and can be extended arbitrarily outside
of it). In Stoch, the definition of conditionals recovers regular conditional distributions which
are known to exist for standard Borel spaces. Given a relation Ψ ⊆ X × Y, a conditional
f : X → P(Y) is given by the slicing

f (x) = {y ∈ Y : (x, y) ∈ Ψ} �

9 Dataflow Axioms

A wide range of formal structures fit the axioms of Markov categories. Further properties
can then be imposed to recover various familiar aspects of traditional probability. The prop-
erties we summarize under “dataflow axioms” in this section are information-theoretic in
nature: They capture that information flow behaves classically in certain ways. These prop-
erties do for example distinguish classical probability from negative probabilities, but cannot
distinguish between probability and nondeterminism.

We recall the notions of positivity and causality. We then give novel characterizations of
each and establish that causality implies positivity. We will later see that failure of positivity
is linked to information leaking, which makes it a crucial tool in analyzing name generation
(Section 26). This section is based on an upcoming article with Tobias Fritz, Tomáš Gonda,
Nicholas Gauguin Houghton-Larsen and Paolo Perrone.

9.1 Positivity

Positivity arose as a candidate axiom to rule out the “destructive interference” seen in neg-
ative probability Fritz [2020, 11.22]. We will give novel characterizations which suggest the
axiom is rather about the absence of information hiding than negativity, and discover non-
examples involving strictly nonnegative probability. Yet, we’ll stick with the name positivity
for historic reasons.

78

Definition 9.1 (Fritz [2020, 11.22]) A Markov category C is positive if whenever f : X → Y
and g : Y → Z are such that g ◦ f is deterministic, then

(g⊗ idY) ◦ copyY ◦ f = ((g ◦ f)⊗ f) ◦ copyX (41)

This formulation of the axiom is somewhat mysterious, but it suggests that irrelevant
intermediate results cannot introduce correlations. If g f is deterministic, the intermediate
output of f may be resampled rather than copied. We’ll discuss examples once we’ve ar-
rived at our equivalent characterization:

In statistics, constants are independent of all other variables. For example, given a joint

distribution (X, Y), if X d
= x0 then Y⊥X. We can adapt this into the following definition for

Markov categories.

Definition 9.2 (Deterministic marginal property) A Markov category C has the determinis-
tic marginal property if for every f : A → X ⊗ Y, whenever one marginal fX is deterministic
then f is the product of its marginals

f = 〈 fX, fY〉 (42)

Proposition 9.3 The following are equivalent for a Markov category C.

(i) C is positive

(ii) C has the deterministic marginal property

PROOF (i)⇒(ii): Let h : A → X ⊗ Y be given with deterministic marginal hX; instantiate the
positivity axiom with

=

XA

hf g

Y

X Y

=

Then g f = hX is deterministic by assumption, so (41) reads

h h=

X Y X Y

AA

h

XX

79

From this, we obtain by further marginalizing the middle wire

h h=

X Y X Y

AA

h

(ii)⇒(i): Let f : A→ X, g : X → Y be such that g f is deterministic. Define

f

=

X Y

AA

h

g

By assumption, the marginal hX is deterministic, so the deterministic marginal property al-
lows us to conclude that

=

A

f f

g

f

A

g

which is precisely the positivity equation (41). �

We can now intuitively see why negative probabilities break positivity. Consider again
the joint distribution µ : 1→ 2× 2 in the Kleisli category of D± (Section 5.4) given by

µ = −1
2
[(0, 0)] +

1
2
[(0, 1)] +

1
2
[(1, 0)] +

1
2
[(1, 1)]

Its marginals are both deterministic, µX = µY = [1] but µ is not a product distribution, for X
and Y are perfectly anti-correlated, that is Pr(X = Y) = 0.

Measure theory on the other hand is positive [Fritz, 2020, 11.25]. We can easily rederive
this using the deterministic marginal property: Let µ be a probability measure on X×Y, we
can compare it with the product of its marginals in measurable rectangles A× B by

(µX ⊗ µY)(A× B) = µX(A) · µY(B) = µ(A×Y) · µ(X× B)

If µX is deterministic, i.e. µ(A×Y) ∈ {0, 1}, we obtain

µ(A×Y) · µ(X× B) = µ(A× B)

80

because µ(U) · µ(V) = µ(U ∩ V) holds whenever µ(U) ∈ {0, 1}. This proof certainly uses
the fact that µ(U) is nonnegative; for example {X = 1} and {Y = 1} are non-independent
probability 1-events in the negative probability example. However, it also relies heavily on
the fact that joint distributions are defined on product σ-algebras, which allows us to reduce
their behavior to measurable rectangles. It is this aspect that breaks in quasi-Borel spaces (see
Section 27.2), allowing non-positivity while maintaining nonnegative probabilities. A pro-
totypical example of non-positivity is name generation, which will be discussed extensively
in Section 26.

Proposition 9.4 Every Markov category with conditionals is positive.

PROOF This is [Fritz, 2020, 11.24]. Note that this is consistent with Proposition 9.12 and the
fact that every Markov category with conditionals is causal. �

Proposition 9.5 The following Markov categories are positive: FinStoch, BorelStoch, Stoch, FinSetMulti

PROOF We have shown that Stoch has the deterministic marginal property, and positivity
restricts to its subcategories. For the case of FinSetMulti, it is easy to see that if a relation
R ⊆ X×Y satisfies

{x : (x, y) ∈ R} = {x0}

then R is the product of its marginals R = {x0} × {y : (x, y) ∈ R}. Alternatively, FinSetMulti

is known to have conditionals (Proposition 8.15). �

We remark that a notion of Jacobs [2016] can now be related to positivity.

Definition 9.6 (Jacobs [2016, Def. 1]) A commutative monad on a category C with binary
products is called strongly affine if the following square is a pullback for all X, Y

T(X)×Y Y

T(X×Y) T(Y)

π2

δYstX,Y

T(π2)

y

(43)

Jacobs shows that all strongly affine monads are in fact affine, justifying the terminology.
The pullback can be read as a direct categorification of the deterministic marginal property:
The only distributions in T(X×Y) that have a deterministic Y-marginal are those that come
from constants Y. It is not surprising to obtain the following characterization of positive
Kleisli categories.

Proposition 9.7 Let T satisfy the representability condition (Definition 6.8). Then the Kleisli cate-
gory CT is positive iff T is strongly affine.

81

PROOF Let T be strongly affine and f : A→ T(X×Y) have a deterministic marginal fY. By
representability, fY = δYg for some g : A→ Y. So the outer square commutes and we obtain
a factorization u

A

T(X)×Y Y

T(X×Y) T(Y)

T(X)

δY

T(π2)

stX,Y

π2

g

f

u

T(π1)

fX

which is necessarily of the form u = 〈 fX, g〉 as seen by composing with the appropriate
projections. It follows that f is the product of its marginals.

Conversely let a commutative outer square be given, then fY = δYg is deterministic and
by the deterministic marginal property, we obtain that u = 〈 fX, g〉 is the (necessarily unique)
factorization, making the square (43) a pullback. �

Combining Proposition 6.10 and Proposition 9.5, we see that the monads D, P+
f and

GSbs are strongly affine. The Giry monad on Meas is strongly affine despite violating rep-
resentability, and the affine combination monad D± is not not strongly affine [Jacobs, 2016,
Ex. 1,2].

We conclude with a somewhat subtle pathology of certain Markov categories, and show
that this situation can not arise if the Markov categories are positive.

Example 9.8 (Fritz [2020, 10.10]) Isomorphisms in Markov categories are not necessarily de-
terministic.

PROOF Let C be the category of commutative monoids in Set. Take for example X =

{0, 1, 2}, then we can find two distinct commutative monoid multiplications m1, m2 : X ×
X → X which both have 0 as the neutral element. The opposite category Cop is a Markov
category (Section 6.2.3), and

idX : (X, m1, 0)→ (X, m2, 0)

is a counit-preserving isomorphism. It is however not deterministic because it is not comul-
tiplication preserving (m1 6= m2). �

We regard this as highly pathological, because it means Markov structures aren’t neces-
sarily stable under monoidal equivalence (cf. Remark 6.11). This phenomenon is uncommon
though, and it won’t occur in nice cases:

Proposition 9.9 (Fritz [2020, 11.29]) In a positive Markov category, all isomorphisms are deter-
ministic.

82

9.2 Causality

Causality is another dataflow axiom identified in [Fritz, 2020]. As remarked by Fritz, this ax-
iom is equivalent to the notion of equality strengthening discussed by Cho and Jacobs [2019,
Def. 5.7], but we won’t need that formulation. We briefly remark that causality is useful for
reasoning about supports, and prove that it is a stronger property than positivity (Proposi-
tion 9.12).

Definition 9.10 (Fritz [2020, 11.31]) A Markov category C is called causal10 if every equation

=

A

f

Y

g

h1

Z

A

g

h2

Z

f

Y

(44)

implies the stronger equation

=

A

f

Y

g

h2

ZX

g

h1

YX Z

A

f

(45)

Causality implies that supports behave sensibly under pushforward. This will be useful
for reasoning about the satisfiability of conditions in Theorem 19.6.

Proposition 9.11 Let C be causal, then the absolute continuity relation� (Definition 8.7) respects
composition in the sense that for all f : X → Y and µ, ν : I → X

µ� ν⇒ f µ� f ν

10This definition is unrelated to the use of the word causal in categorical quantum foundations, which means
terminality of the unit.

83

PROOF Let µ� ν and consider arbitrary h1, h2 : Y → Z such that h1 = f ν h2, i.e.

ν

f

Y

h1

=

Z

ν

f

Y

h2

Z

Causality implies the stronger equation

ν

=

f

Y

h1

Z X

ν

f

Y

h2

Z X

By the absolute continuity assumption, we may replace ν by µ in this equation; marginaliz-
ing the X-wire shows h1 = f µ h2. �

Despite having rather different shapes, we show that the causality axiom can be used to
derive positivity.

Proposition 9.12 Every causal Markov category is positive.

PROOF Let f , g be such that g f is deterministic. We make the following choices of mor-
phisms to which to apply the causality axiom (writing f ′,g′ in place of f , g).

A

f

A X

g

Y

A

f

Y

X

g

Y

Y Y

Y

Y Y

Y

Y

f ′ g′ h1= = = h2 =

84

We check that the assumption (44) holds, that is

A

f

g

Y

f

g

Y Y

=

f

Y

A

Y

f

Y

g

g

which simplifies to

A

f

g

Y

f

g

Y Y

=
f

Y

g

A

Y Y

g

f

which holds by the fact that g f is deterministic. The causality axiom now implies the
stronger equation (45), which reads

=

f

Y

g

A

Y Y

g

f

YA XYAY

g

g

X

f

Y

f

A

Y

85

We simplify by marginalizing over all occurrences of Y except the first one, obtaining

=

f

g

A

Y

g

f

X

g

g

X

f

Y

f

A

which can be simplified to yield (41)

=

A

Y

g

f

X

g

X

f

Y

f

A �

The converse to Proposition 9.12 is shown to be false in [Fritz and Rischel, 2020].

Proposition 9.13 (Fritz [2020, 11.34]) Every Markov category with conditionals is causal.

Again, the converse is false: It is known that Stoch is causal [Fritz, 2020, 11.35] but does
not have all conditionals.

86

Chapter III

The Beta-Bernoulli Process and Algebraic
Effects
SUMMARY: This chapter is about a synthetic presentation of the interaction of the Beta-
and Bernoulli distributions. These distributions are important primitives in Bayesian statis-
tics, because they model biased choices as well as beliefs over the biases. Our presentation
is purely algebraic and combinatorial, and avoids all mention of measure theory. We will
however prove the theory complete with respect to measure theory (Theorem 12.10) as well
as syntactically complete (Theorem 13.5). Our theory is an instance of a general recipe for
presenting interesting Markov categories (Section 14).

From the programming side, our analysis can be conducted in terms of a minimalistic
probabilistic programming language and the framework of algebraic effects (Section 3.6). In
addition to exchangeability and discardability, it reveals the importance of abstract datatypes
and a program equation called conjugacy. Monadic programming naturally lends itself to
expressing hierarchical models (beliefs over beliefs).

Our theory allows us to make formal connections to a different, stateful implementation
of the Beta-Bernoulli process through Pólya’s urn: Our syntactic completeness result implies
that both implementations must satisfy precisely the same program equations. The link be-
tween sampling and generativity (here: creating a new urn) is a persistent theme throughout
the thesis (e.g. random variables in Chapter IV, names in Chapter V).

This chapter is based on joint work with Sam Staton, Hongseok Yang, Nathanael Acker-
man, Cameron Freer and Daniel Roy [Staton et al., 2018]. It formalizes and proves a conjec-
ture from [Staton et al., 2017b].

We begin with a leisurely introduction to the topics of interest:

10 Introduction

10.1 Beta-Bernoulli

0

0.5

1

1.5

2

0 0.25 0.5 0.75 1

beta(3,2)

beta(2,2)

Alice and Bob watch a football player score a penalty. Alice has seen
the player score on 80 out of 100 kicks, while Bob – newer to football –
has only seen them succeed 8 out of 10 times. Both observers estimate
that the player will on average score 80% of kicks. However, Alice’s
assessment of this probability is more certain, as she has access to more
prior information. On the other hand, Bob learns more from the latest
observation, revising his opinion more than Alice.

Bob’s prior belief of the player’s skill (before the latest kick) can be modeled by the dis-
tribution Beta(7, 2) where the parameters record the previous observations of 7 successes
versus 2 failures. The distribution Beta(α, β) has the following density over the interval

87

[0, 1]

pdfα,β(p) =
1

B(α, β)
pα−1(1− p)β−1 (46)

where the normalization constant B(α, β) is given in terms of the Gamma function as

B(α, β) =
Γ(α)Γ(β)

Γ(α + β)

In the remainder of this chapter, we will focus on integer parameters with α + β > 1. In this
case, the normalization constant can be written more simply as

B(α, β) =
(α− 1)!(β− 1)!
(α + β− 1)!

To predict the outcome X of the latest kick, Bob first samples the success probability p for
the player according to his belief, and then models the kick succeed with probability p

p ∼ Beta(7, 2)

X ∼ Bernoulli(p)

Conditioning this model on the outcome X = 1, the variable p|(X = 1) has density

f (p) =
(∫ 1

0
p · pdf7,2(p)dp

)−1

· p · pdf7,2(p)

=

(∫ 1

0
p7(1− p)1dp

)−1

p7(1− p)1

=
1

B(8, 2)
p7(1− p)1

which we recognize as the density of Beta(8, 2). This is consistent with the interpretation
that Bob has now observed 8 successes and 2 failures. Conditioned on a negative outcome
X = 0, Bob would instead have the posterior belief Beta(7, 3). Alice’s posterior belief is mod-
eled by Beta(80, 20). Both Beta(8, 2) and Beta(80, 20) have mean 0.8, but the latter has a
much sharper peak. This situation that a Beta prior conditioned on a Bernoulli outcome is
again Beta, is referred to as a conjugate prior relationship.

We work towards giving a synthetic presentation of the Beta-Bernoulli relationship. Con-
sider a probabilistic language with a type bool for booleans and an abstract type I for the unit
interval [0, 1]. Then Bob’s belief update can be expressed as the program

let p : I = beta(7,2)

let x : bool = flip(p)

condition(x == true)

return p

The conjugate prior relationship implies that this program can be simplified to

88

let p = beta(8,2) // conjugate prior update
let x = true // we conditioned on x being true
return p

The condition has been removed, to the effect of revising a prior in the past. Let’s ask
Bob to predict the outcome of the next penalty, that is the query

let p = beta(7,2)

let x = flip(p)

condition(x == true)

return flip(p) // predict another kick

We notice that this is a hierarchical model: The true bias p is latent, and Bob makes two coin
flips with that unknown bias. Because of that, the coin flips are not independent, but only
conditionally independent given p. By the previous consideration, this model simplifies as

let p = beta(8,2)

let x = true

return flip(p)

The value of x is irrelevant and can be discarded by (Disc). If we sample p ∼ Beta(α, β)

and immediately perform a coin flip X ∼ Bernoulli(p), then that coin comes up heads with
probability α/(α + β). In code

let p = beta(α,β) in flip(p) ≈ flip(α/α+β)

The whole program thus reduced to the answer flip(8/10). This technique of evaluating a
probabilistic program is called symbolic inference.

10.2 Towards an Algebraic Theory

We use these ideas to give a model of Beta-Bernoulli that is purely based on algebra and com-
binatorics; no measure theory or analysis is required. To simplify reasoning with program
equations, we write the probabilistic language in continuation passing style and introduce
the following shorthand.

Shorthand Long expression

να,β p.u let p = beta(α,β) in u

u ?p v if flip(p) then u else v

u +m:n v if flip(m/(m+n)) then u else v

We can axiomatize these operations equationally using an algebraic theory. This theory
needs to be second-order because να,β is a binder (Section 3.7). For example, following (Disc),

89

there is an axiom stating that unused samples are discardable, i.e. for p /∈ fv(u) we have

να,β p.u ≡ u (Disc)

A special role among the axioms is played by the conjugacy axiom, which expresses the sym-
bolic update rule for Beta distributions:

να,β p.(u(p) ?p v(p)) ≡ (να+1,β p.u(p)) +α:β (να,β+1 p.v(p)) (Conj)

Making a coin flip following a Beta draw means randomly choosing an outcome, but inside
each branch, the parameters of the Beta distribution have been updated to reflect the new
information. Using the shorthand, we may express Bob’s prediction of the next two kicks as
the term

ν7,2 p. (x ?p y) ?p z

which models one kick, and then another one (x ?p y) if the first one succeeds. Using the two
axioms above, we can simplify this term to

ν7,2 p. (x ?p y) ?p z ≡ (ν8,2 p.x ?p y) +7:2 (ν7,3 p.z)

≡ ((ν9,2 p.x) +8:2 (ν8,3 p.y)) +7:2 z

≡ (x +8:2 y) +7:2 z

showing both the posterior 8:2 in case the first kick succeeds, and the model evidence 7:2.

We give the full theory in Section 11.3. Its term model defines a synthetic model of prob-
ability theory. This model is purely combinatorial and yet contains interesting probability
distributions like the Beta family which ordinarily require density functions and measure
theory (Section 14).

We can now at least informally state our two main theorems (with references to the for-
mal statement): Firstly, our theory is complete with respect to measure-theoretic semantics:

Informal Theorem (Completeness – Theorem 12.10) An equation u ≡ v is derivable from the
axioms if and only if it holds in measure theory.

In fact, we can show a stronger completeness result stating that the axioms are maximally
consistent in a certain way, meaning that every nondegenerate model is complete:

Informal Theorem (Syntactic completeness – Theorem 13.5) For every equation u ≡ v,

(i) either the equation u ≡ v is derivable from the axioms of the theory

(ii) if not, then assuming u ≡ v and its substitution instances, we can logically derive an incon-
sistency of finite probabilities. That is we can derive

x +i:j y ≡ x +k:l y for all i, j, k, l ≥ 1

The syntactic completeness result is interesting because it allows us to make a precise formal
connection between the Beta-Bernoulli process and a different stochastic process (Pólya’s
urn). Those processes are related by way of De Finetti’s theorem, as we explain now.

90

10.3 Pólya’s Urn, Exchangeability and Abstraction

Pólya’s urn is a statistical urn which implements drawing with duplication: We select a ball
from the urn, record its color and return it to the urn along with a copy of the same color. Let
U0 = (R0, B0) record the number of red and black balls the urn contains at time 0, then we
let

Xn ∼ Bernoulli(Rn/(Rn + Bn))

Un+1 =

{
(R0 + 1, Bn) if Xn = 1

(R0, Bn + 1) if Xn = 0

The draws (Xi) are not independent. If we start with one red and one black ball, ob-
serving three red draws in a row will make a future red draw much more likely. It does
however not matter in which order the outcomes were observed: A sequence X0, X1, . . . of
random variables is called exchangeable if for any permutation σ on {0, . . . , n}, the vectors
(X0, . . . , Xn) and (Xσ(0), . . . , Xσ(n)) have the same distribution. One can show that the draws
(Xn) of Pólya’s urn indeed form an exchangeable sequence. The connection to Beta-Bernoulli
is made through De Finetti’s theorem (e.g. [Schervish, 1995]):

Theorem 10.1 (De Finetti) Let X0, . . . be an infinite exchangeable sequence of {0, 1}-valued ran-
dom variables. Then we can model the Xi as conditionally independent coin flips. That is, there is a
unique distribution π on [0, 1] such that the sequence (Xi) has the same distribution as

p ∼ π

Xi ∼ Bernoulli(p) iid.

That is, we choose the bias p of a coin at random, and the Xi are drawn independently given that p.

Applying this result to Pólya’s urn precisely recovers the Beta-Bernoulli process:

Proposition 10.2 Let U0 = (R0, B0), then the sequence (Xi) arises as

p ∼ Beta(R0, B0)

Xi ∼ Bernoulli(p) iid.

Pólya’s urn has an obvious implementation in an impure probabilistic language with
coin flips and state.

module Polya = struct

type process = (int * int) ref // a mutable urn (number of red, black balls)
let new (i,j) = ref (i,j) // urn creation is memory allocation
let get p = // drawing from the urn is stateful
let (i,j) = !p in

if flip(i/(i+j))

then p := (i+1,j); true

else p := (i,j+1); false

end

91

Recall that the interface to a pseudorandom number generator looks commutative and dis-
cardable despite its use of state as long as the seed is kept abstract. The same properties hold
for Pólya’s urn as long as the contents of an urn cannot be inspected. We can enforce this
sort of opacity by hiding the urns in an abstract type process in the following signature

module AbstractProcess = sig

type process // abstract type of urns
val new : int * int −> process // initialize process
val get : process −> bool // draw from the process

end

The AbstractProcessmodule has another implementation which is stateless but uses contin-
uous probability: Beta-Bernoulli

module BetaBern = struct

type process = I // unit interval
let new (i,j) = beta(i,j)

let get p = flip(p)

end

In which way are the two implementations related? This is akin to asking for a fini-
tary, programming-language theoretic instance of De Finetti’s theorem. The module Polya
has a straightforward operational semantics (which we won’t formalize here). By contrast,
BetaBern has a straightforward denotational semantics using measure theory (Section 4.2).

A connection between the two semantics can be made by showing that our algebraic
theory is sound for both accounts. By the syntactic completeness theorem, both models are
then also complete for the theory, and must thus satisfy the exact same equations:

Informal Theorem (Section 13.4) Polya and BetaBern have the same equational theory.

It is however not straightforward to verify that Polya validates our axioms! We elaborate
a strategy for doing this in Section 13.4, which relies on the methods of Section 13.

Exchangeable random processes are an important primitive in Bayesian nonparametric
statistics (see [Ackerman et al., 2016a; Staton et al., 2017b] and the references therein). We
contend that the commutativity and discardability equations are very close to this notion
of exchangeability. A client program for the BetaBern module is clearly commutative by
Fubini’s theorem. For the Polyamodule, an elementary calculation is needed: it is not trivial
because memory is involved.

Our findings points to an interesting phenomenon which will occur repeatedly through-
out this thesis. Pólya’s urn satisfies (Comm), (Disc), that is its theory looks like that of a pure
probabilistic language. We can therefore already speak of new and get as synthetic probabilistic
operations. From this perspective, it is maybe not surprising to find that a synthetic proba-
bilistic effect (urn creation) can be implemented in terms of an actual probabilistic effect (Beta
sampling).

92

10.4 Algebraic Effects, Monads and Models of Synthetic Probability

Algebraic effects (Section 3.6) provide a concise way to axiomatize the specific features of
an effect while putting aside the general properties of programming languages, such as β/η

laws. A full programming language will feature other constructs, but it is routine to combine
these with an algebraic theory of effects (e.g. [Ahman and Staton, 2013; Johann et al., 2010;
Kammar and Plotkin, 2012; Pretnar, 2010]).

In Section 14, we spell out how our algebraic theory is a convenient tool to present cat-
egorical models of probability. This means we have a variety of internal languages at our
disposal (Sections 3.1 and 7) and can analyze the theory using the concepts of synthetic
probability theory.

It is straightforward to turn the terms of the algebraic theory into morphisms of a Markov
category. Using general methods (Section 3.7), the theory also induces a generalized proba-
bility monad P on the presheaf category [Fin, Set]. That category is also cartesian closed and
serves as a natural domain for semantics of a fully-fledged programming language.

Double distributions: Monadic programming offers a particularly natural way of talking
about Beta-Bernoulli. Classically, the Beta distribution is defined to take values p ∈ [0, 1] in
the unit interval, but recall from Example 4.10 that every such value can be understood as a
distribution flipp on the booleans. The Beta distribution becomes a distribution over distribu-
tions, that is a morphism

betai,j : 1→ P(P(2)) (47)

This is consistent with the Bayesian intuition for Beta as belief over beliefs. For example,
beta1,1 generates a coin p of uniformly random bias. Such a coin may itself be tossed repeat-
edly using monadic sequencing such as

let p : P(2) ← beta1,1 in

let x1 : 2 ← p in

let x2 : 2 ← p in

[(x1, x2)]

Note that the average coin produced by beta1,1 is a fair one; in terms of the monadic join

join(beta1,1) = (let p ← beta1,1 in p) = flip0.5

This layering of effects is typical for hierarchical models [Goodman et al., 2016, Chapter 12].
Note that the abstract type I and the Bernoulli distribution have been subsumed completely
in the structure of monadic computation. The monadic language module can naturally ex-
press the multi-outcome generalizations of Beta-Bernoulli consisting of ‘categorical’ distri-
butions π ∈ P(n) and Dirichlet distributions diri1,...,ik ∈ P(P(n)).

10.5 Outline

In summary, our main contribution is that the axioms — commutativity, discardability, con-
jugacy, and finite probability — entirely determine the equational theory of the Beta-Bernoulli
process, in the following sense:

93

• Model completeness: Every equation that holds in the measure theoretic interpretation
is derivable from our axioms (Theorem 12.10);

• Syntactical completeness: Every equation that is not derivable from our axioms is incon-
sistent with finite discrete probability (Theorem 13.5).

In Section 11, we introduce the language and algebraic theory of Beta-Bernoulli. In Sec-
tion 12, we give the intended semantics of the theory in measure theory and show that this
interpretation is complete. The proof relies on a normalization procedure and the linear in-
dependence of Bernstein basis polynomials. In Section 13, we use the model completeness
result to derive syntactical completeness. Here we make use of techniques from mathemati-
cal analysis to prove the existence of definable distinguishing contexts.

In Section 14, we showcase the general procedure by which algebraic theories present
models of synthetic probability. Our language can be seen as a combinatorial characteriza-
tion of a Markov subcategory of BorelStoch built from the Beta and Bernoulli kernels.

11 An Algebraic Presentation of the Beta-Bernoulli Process

In this section, we present syntactic rules for well-formed client programs for an AbstractProcess,
and axioms for deriving equations on those programs. We will refer to elements of the ab-
stract type process, which may represent urns or Beta samples depending on the imple-
mentation, as parameters. This is consistent with the terminology of parameterized algebraic
theories (Section 3.7).

11.1 An Algebraic Presentation of Finite Probability

We begin by presenting the Bernoulli distribution, that is biased coin flips. Because of the
discrete nature of urns, it suffices to treat rational probabilities. We will also write odds (i : j)
for integers i + j > 0 instead of probabilities, as this makes the conjugacy axiom slightly
more convenient. The odds (i : j) always represent the ratio i/(i + j).

The coin flip flip(i : j)with odds (i : j) defines a binary operation +i:j on programs by

u +i:j v def
= if flip(i : j) then u else v

Conversely, given the operations +i:j, we can recover flip(i : j) = true+i:j false. This is
the usual correspondence of algebraic operations (+i:j) and generic effects (flip(i : j)). The
algebraic laws for +i:j due to Stone [1949] are analogous to the usual laws for convex sets
(see Section 3.6), restricted to natural odds

Definition 11.1 The theory of rational convexity is the first-order algebraic theory with binary
operations (+i:j) for all i, j ∈N such that i + j > 0, subject to the axiom schemes

(w +i:j x) +i+j:k+l (y +k:l z) = (w +i:k y) +i+k:j+l (x +j:l z)

x +i:j y = y +j:i x x +i:0 y = x x +i:j x = x

94

Commutativity of all pairs of operations (+k:l) and (+i:j) is a derivable equation,

(w +i:j x) +k:l (y +i:j z) = (w +k:l y) +i:j (x +k:l z)

and so is scaling
x +ki:kj y = x +i:j y, ∀k > 0

As usual, commutativity and discardability (x +i:j x = x) in this algebraic sense precisely
correspond to the program equations (Comm), (Disc). As an aside, the monad DQ of the
theory is given by rational convex combinations, but we won’t need this fact in what follows
(see also Section 12.3)

DQ(X) = {p : X → [0, 1] ∩Q finitely supported | ∑
x∈X

p(x) = 1} (48)

11.2 A Parameterized Signature for Beta-Bernoulli

In the signature AbstractProcess (Section 10.3), the arguments to get are first-class values
(parameters) of the abstract type process. This type is instantiated to urns in case of Polya,
and to real probabilities in BetaBern. On the other hand, we treat the integer arguments to
new and flip as hyperparameters, which are not first-class. In a more complex hierarchical
system with hyperpriors, we might treat them as first-class in turn.

For a full theory of Beta-Bernoulli, we define the algebraic operations

νi,j p.t def
= let p=new(i,j) in t u ?p v def

= if get(p) then u else v

There is nothing lost because we can recover the generic effects from their operations as

new(i,j) = νi,j p. p get(p) = true ?p false

Note that (?p) is a parameterized binary operation and νi,j is a binder. Formally, our
syntax requires two kinds of variables: variables x, y ranging over programs (continuations),
and now also p, q ranging over parameters. Continuation variables x may themselves expect
parameters, and we write their arity as x : n. Using the formalism of second-order algebraic
theories (Section 3.7), the signature of Beta-Bernoulli consists of the following families of
operations

(+k:l) : (0 | 0, 0) (?) : (1 | 0, 0) νi,j : (0 | 1) k + l ≥ 1, i, j ≥ 1

Note that there are no operations combining parameters to new parameters; the type process
is purely abstract. Formally, this means our theory is parameterized over the theory of equal-
ity (Section 3.6). We spell out the term formation in detail

Definition 11.2 The term formation rules for the theory of Beta-Bernoulli are:

−
(p1 . . . pm ∈ Γ)

Γ |∆, x : m, ∆′ ` x(p1, · · · , pm)

Γ, p |∆ ` t
(i, j > 0)

Γ |∆ ` νi,j p.t

Γ |∆ ` t Γ |∆ ` u
(p ∈ Γ)

Γ |∆ ` t ?p u

Γ |∆ ` t Γ |∆ ` u
(i + j > 0)

Γ |∆ ` t +i:j u

95

Contexts have two zones; Γ is a parameter context of the form Γ = (p1, . . . , p`) and ∆ is
a context of continuation variables the form ∆ = (x1 : m1, . . . , xk : mk). For ease of notation,
we often abbreviate x() by x.

Recall the two types of substitution in second-order algebra: terms for parameters, and
programs for continuation variables (Section 3.7). Substitution of computations is capture-
avoiding, and we work up to α-conversion of bound parameters. For example, substituting
x ?p y for w in ν1,1 p.w yields ν1,1q.(x ?p y), while substituting x ?p y for z(p) in ν1,1 p.z(p) yields
ν1,1 p.(x ?p y). For the sake of a well-defined notion of dimension in 12.6, we disallow the
formation of νi,0 and ν0,i (see Appendix, Section 32.2).

11.3 Axioms for Beta-Bernoulli

The axioms for the Beta-Bernoulli theory comprise the axioms for rational convexity (Defi-
nition 11.1) together with the following axiom schemes.

Commutativity. All the operations commute with each other:

p, q |w, x, y, z : 0 ` (w ?q x) ?p(y ?q z) = (w ?p y) ?q(x ?p z) (C1)

− | x : 2 ` νi,j p.νk,lq.x(p, q) = νk,lq.νi,j p.x(p, q) (C2)

q | x, y : 1 ` νi,j p.(x(p) ?q y(p)) = (νi,j p.x(p)) ?q(νi,j p.y(p)) (C3)

− | x, y : 1 ` νi,j p.(x(p) +k:l y(p)) = (νi,j p.x(p)) +k:l (νi,j p.y(p)) (C4)

p |w, x, y, z : 0 ` (w +i:j x) ?p(y +i:j z) = (w ?p y) +i:j (x ?p z) (C5)

Discardability. All operations are idempotent:

− | x : 0 `νi,j p.x = x (D1)

p | x : 0 `x ?p x = x (D2)

Conjugacy.

− | x, y : 1 `νi,j p.(x(p) ?p y(p)) = (νi+1,j p.x(p)) +i:j (νi,j+1 p.y(p)) (Conj)

A theory of equality for terms in context is built, as usual, by closing the axioms under
substitution instances, weakening, congruence, reflexivity, symmetry and transitivity. It im-
mediately follows from conjugacy and discardability that x +i:j y is definable for i, j > 0,
as

νi,j p.(x ?p y) = (νi+1,j p.x) +i:j (νi,j+1 p.y) = x +i:j y

For a more involved example, consider the operation

t(r) = (r ?p x) ?p(y ?p r)

that represents tossing a coin with bias p twice under the Beta-Bernoulli interpretation, con-
tinuing with x or y if the results are different, or with r otherwise. In the appendix (Sec-
tion 32.1), we include a proof that x +1:1 y is the unique fixed point of t, i.e. x +1:1 y =

t(x +1:1 y). This is exactly von Neumann’s trick [von Neumann, 1951] to simulate a fair coin
toss from a biased one.

96

12 A Complete Interpretation in Measure Theory

In this section we define the intended semantics of terms using measure theory (Section 4.2)
and we show that this interpretation is complete (Theorem 12.10). We will make use of the
completeness to establish purely syntactical results about the theory in Section 13.

By the Riesz–Markov–Kakutani representation theorem (Section 4.4), there are two equiv-
alent ways to view probabilistic programs: as probability kernels and as linear functionals.
We will frequently switch between both views;

Programs as probability kernels: Let I denote the standard Borel space [0, 1] and let βi,j ∈
G(I) denote the Beta distribution with parameters i, j, as given by the density function pdf i,j
as in (46). For contexts of the form Γ = (p1, . . . , p`) and ∆ = (x1 : m1, . . . , xk : mk), we let

J∆K def
= ∑k

i=1 Imi consist of a copy of Imi for every variable xi : mi. We’ll for the moment
emphasize parameters as fraktur p to distinguish them from their interpretations as proba-
bilities p ∈ [0, 1] in the semantics.

Definition 12.1 We interpret terms Γ |∆ ` t as probability kernels JtK : I` ; J∆K inductively,
for ~p ∈ I` and U ⊆ J∆K measurable, as follows11

Jxi(pj1 , . . . , pjm)K(~p, U) = [(i, pj1 . . . pjm) ∈ U]

Ju +i:j vK(~p, U) = 1
i+j

(
i(JuK(~p, U)) + j(JvK(~p, U))

)
Ju ?pj vK(~p, U) = pj(JuK(~p, U)) + (1− pj)(JvK(~p, U))

Jνi,jq.tK(~p, U) =
∫ 1

0
JtK((~p, q), U) βi,j(dq)

Proposition 12.2 The interpretation is sound: if Γ |∆ ` t = u is derivable then JtK = JuK as
probability kernels JΓK ; J∆K.

PROOF One must check that the axioms are sound under the interpretation. Each of the
axioms are elementary facts about probability. For instance, commutativity (C2) amounts to
Fubini’s theorem, and the conjugacy axiom (Conj) is the well-known conjugate-prior rela-
tionship of Beta- and Bernoulli distributions. �

We notice that all kernels JtK are continuous when seen as maps between Polish spaces
JΓK → G(J∆K). We can therefore give the dual analysis in terms of functional analysis (see
Section 4.4). To keep things simple, we will use real Banach algebras C(X, R) instead of com-
plex C*-algebras C(X, C). We’ll make natural use of both measure-theoretic and functional-
analytic semantics in our proofs.

Interpretation as functionals: Write RX for the commutative Banach algebra of continuous
functions X → R, endowed with the supremum norm. Given a continuous kernel κ : JΓK→
J∆K, we define linear map φ : RJ∆K → RJΓK by considering κ as an integration operator

φ(f)(~p) =
∫

f (r)κ(~p, dr)

11recall Iverson bracket notation, i.e. [φ] = 1 if φ is true, and [φ] = 0 otherwise

97

The resulting map φ is a positive unital linear map. Recall that a map φ is positive if f ≥ 0
implies φ(f) ≥ 0, and unital if φ(1) = 1.

It is informative to spell out the interpretation of terms p1, . . . , p` | x1 : m1, . . . , xk : mk ` t
as maps JtK : RIm1 × . . .×RImk → RI` directly. This semantics fits the continuation passing
style of the term language: we may think of computation variables x : m as ranging over
functions in RIm

.

Definition 12.3 The functional interpretation is inductively given by

Jxi(pj1 , . . . , pjm)K(~f)(~p) = fi(pj1 , . . . , pjm)

Ju +i:j vK(~f)(~p) = 1
i+j

(
i(JuK(~f)(~p)) + j(JvK(~f)(~p))

)
Ju ?pj vK(~f)(~p) = pj(JuK(~f)(~p)) + (1− pj)(JvK(~f)(~p))

Jνi,jq.tK(~f)(~p) =
∫ 1

0
JtK(~f)(~p, q) βi,j(dq)

For example, J− | x, y : 0 ` x +1:1 yK : R × R → R is the function (x, y) 7→ 1
2 (x + y), and

J− | x : 1 ` ν1,1p.x(p)K : RI → R is the integration functional, f 7→
∫ 1

0 f (p)dp. The analogous
soundness property to Proposition 12.2 holds for the functional interpretation. We use the
same brackets J−K for both interpretations, as the intended semantics will be clear from
context.

12.1 Background on Bernstein polynomials

We review well-known facts about Bernstein polynomials, which enjoy various applications
from probability theory to computer graphics [Farouki, 2012]. In our work, they feature in
two related semantical roles, as decision trees (Section 12.4) and the density functions of the
Beta distribution.

Definition 12.4 (Bernstein polynomials) For i = 0, . . . , k, we define the i-th Bernstein basis
polynomial bi,k of degree k as12

bi,k(p) def
=

(
k
i

)
pk−i(1− p)i

For a multi-index I = (i1, . . . , i`) with 0 ≤ ij ≤ k, we let bI,k(~p) = bi1,k(p1) · · · bi`,k(p`). A
Bernstein polynomial refers to any polynomial expanded in the Bernstein basis.

The family {bi,k : i = 0, . . . , k} forms a basis of the polynomials of maximum degree k and
also a partition of unity, i.e. ∑k

i=0 bi,k = 1. Every Bernstein basis polynomial of degree k can
be expressed as a nonnegative rational linear combination of degree k + 1 basis polynomials.

The density function of the distribution βi,j on [0, 1] for i, j > 0 is proportional to a Bern-
stein basis polynomial of degree i + j− 2. We can conclude that the family of distributions
{βi,j : i, j > 0, i + j = n} is linearly independent for every n.

For multi-indices I, the polynomials {bI,k} are linearly independent for fixed k. Equiv-
alently, products of beta distributions βir ,jr are linearly independent as long as ir + jr = k

12we use here the mirrored version of the common definition, where i is replaced with k− i

98

holds for some common k. This will be the crucial ingredient for establishing the uniqueness
of normal forms for Beta-Bernoulli terms.

Pedantic point: When we say that a family of distributions (µi) on a measurable space (X, ΣX)

is linearly independent, we must formally interpret this statement in a vector space, like the
space of all functions ΣX → R (this is because measures don’t form a vector space). The
relevant point however is that coefficients of linear combinations are uniquely determined,
that is if ∑i wiµi = ∑i w′iµi then wi = w′i for all i.

12.2 Normal Forms and Completeness

For the completeness proof of the measure-theoretic model, we proceed as follows: To de-
cide Γ |∆ ` t = u for two terms t, u, we transform them into a common normal form whose
interpretations can be given explicitly. We then use a series of linear independence results
to show that if the interpretations agree, the normal forms must be syntactically equal. Nor-
malization happens in three stages:

• If we think of a term as a syntax tree of binary choices and ν-binders, we use the con-
jugacy axiom to push all occurrences of ν towards the leaves of the tree.

• We use commutativity and discardability to stratify the use of free parameters ?p.

• The leaves of the tree will now consist of chains of ν-binders, variables and fixed
choices +i:j. Those can be collected into a canonical form.

We will describe these normalization stages in reverse order because of their increasing com-
plexity.

12.3 Stone’s Normal Form for Rational Convex Sets

Normal forms for the theory of rational convex sets have been described by Stone [1949]. We
note that if − | x1 . . . xk : 0 ` t is a term in the theory of rational convex sets (Def. 11.1) then
its semantics (Definition 12.3) JtK : Rk → R is a unital positive linear map that takes rationals
to rationals. From the perspective of measures, this corresponds to a categorical distribution
with k categories.

Proposition 12.5 (Stone) The interpretation of Definition 12.3 exhibits a bijective correspondence
between terms

− | x1 . . . xk : 0 ` t

built from +i:j, modulo equations, and unital positive linear maps Rk → R that take rationals to
rationals.

Example 12.6 The map φ(x, y, z) = 1
10 (2x + 3y+ 5z) is unital positive linear, and arises from

the term t def
= x+2:8 (y+3:5 z). This is the only term that gives rise to the φ, modulo equations.

In brief, one can recover t from φ by looking at φ(1, 0, 0) = 2
10 , then φ(0, 1, 0) = 3

10 , then

φ(0, 0, 1) = 5
10 . We will write

(⊕ x1 . . . xk
w1 . . . wk

)
for the term corresponding to the linear

99

map (x1 . . . xk) 7→ 1
∑k

i=1 wk
(w1x1 + · · · + wkxk). These are normal forms for the theory of

rational convex sets. This normal form is dual to the rational probability monad DQ from
(48), and expressed in terms of odds wi rather than probabilities.

12.4 Normalization of ν-free Terms

This section concerns the normalization of terms using free parameters but no ν. Consider a
single parameter p. If we think of a term t as a syntactic tree, commutativity can be used to
move all occurrences of ?p to the root of the tree. Also by discardability, we can expand the
tree to become a full binary tree of some depth k, which we call a tree diagram. Let us label
the 2k leaves with ta1···ak , ai ∈ {0, 1} as follows

p

p p

t11 t10 t01 t00

(t11 ?p t10) ?p(t01 ?p t00) ≈

As a programming language expression, this corresponds making k successive choices

let a1=get(p) in ... let ak=get(p) in match (a1, . . . , ak) ⇒ ta1···ak

By commutativity (C1), we may reorder these choices. That is, the permutation group Sk acts
on tree diagrams without changing their meaning by permuting the leaves according to the
rule

(σ ∈ Sk) : ta1···ak 7→ taσ(1)···aσ(k)

It is a standard trick in representation theory to obtain an invariant element by averaging
over an orbit. Since rational choice is idempotent, we can indeed replace the tree diagram t
by the average over all its permutations. The average commutes down to the leaves by (C5),
so we obtain a tree diagram with leaves

ma1···ak =
1
k! ∑

σ∈Sk

taσ(1)···aσ(k)

where the average is to be read as a rational choice with all weights 1. This new tree diagram
is derivably equal to t, and by construction invariant under permutation of levels in the tree,
in particular ma1···ak only depends on the sum a1 + · · ·+ ak. That is to say, the counts are a
sufficient statistic. For example

100

p

p p

a b c d

p

p p

a c b d

=

p

p p

a b c d

=

p

p p

a c b d

1 : 1

p

a 1 : 1

b c

=

p

1 : 1 d

b c

p

We write Cp
k (t0, . . . , tk) for the unique permutation invariant tree diagram of k successive

p-choices with leaves ta1···ak = ta1+···+ak , then the example shows

(a ?p b) ?p(c ?p d) = Cp
2 (a, b +1:1 c, d)

We can give the following normalization procedure for terms p1 . . . p` | x1 . . . xn : 0 ` t:
Bring t into the form Cp1

k (t0, . . . , tk) where each ti is p1-free. Then recursively normalize each
ti in the same way, collecting the next parameter. By discardability, we can choose the height
of all these tree diagrams to be a single maximum k, such that the resulting term is a nested
structure of tree-diagrams C

pj
k . We will use multi-indices I = (i1, . . . , i`) to write the whole

stratified term as Ck((tI)) where each leaf tI only contains rational choices and no more use of
the parameters pi. The interpretation of such a term can now be written down explicitly in
terms of Bernstein basis polynomials as

JCk((tI))K(~x)(~p) = ∑
I

bI,k(~p) · JtIK(~x) (49)

We can now give the following completeness result, stating that the stratified tree dia-
grams Ck((tI)) are normal forms.

101

Proposition 12.7 There is a bijective correspondence between equivalence classes of ν-free terms

p1 . . . p` | x1 . . . xn : 0 ` t

and linear unital maps φ : Rn → RI` such that for every standard basis vector ej of Rn, φ(ej) is a
multivariate Bernstein polynomial with nonnegative rational coefficients.

PROOF Clearly every JCk((tI))K is of the desired form. Given φ, we can assume that all basis
polynomial have the same, large-enough degree k. If

φ(ej) = ∑
I

wI,jbI,k (50)

then the unitality condition φ(1, . . . , 1) = 1 means ∑I

(
∑j wI,j

)
bI,k = 1, and hence by the

linear independence of Bernstein basis polynomials and partition of unity, we have ∑j wI,j =

1 for every I. Thus if by Proposition 12.5, we can take tI to be the rational convex combination
with interpretation

JtIK(~x) = ∑
j

wI,jxj

and recover JCk((tI))K = φ. Again by linear independence, the weights wI,j in (50) are
uniquely defined by φ. In particular, two normal forms Ck((tI)), Ck((t′I)) are have the same
interpretation if and only if all tI = t′I are derivably equal. �

Geometric characterizations for the assumption of this theorem exist in [Powers and Reznick,
2000; Alves Diniz et al., 2016]. For example, a univariate polynomial is a Bernstein polyno-
mial with nonnegative coefficients if and only if it is positive on (0, 1). More care is required
in the multivariate case.

12.5 Normalization of Full Terms

For arbitrary terms p1 . . . p` | x1 : m1, . . . , xs : ms ` t, we employ the following normalization
procedure.

(i) Using conjugacy and the commutativity axioms (C2–C4), we can push all uses of ν

towards the leaves of the syntax tree, until we end up with a tree of ratios and free
parameter choices only.

(ii) Using the conjugacy and discardability, we can freely increase the sum i + j of the
indices in any binder νi,j appearing in t, as

νi,j p.x(p) = νi,j p.(x(p) ?p x(p)) = (νi+1,j p.x(p)) +i:j (νi,j+1 p.x(p))

We do this until every instance of νi,j in our term satisfies i + j = k for some large
enough k.

(iii) We now use the symmetrization procedure from Section 12.4 to stratify the use of free
parameters. The resulting term can be written as Cs((tI)) where the leaves tI consist of
only rational choices and ν’s.

102

We call a term without any occurrence of (+i:j) and (?p) a chain, because it must be of the
form

νi1,j1 p`+1. . . . νid,jd p`+d.xj(pτ(1), . . . , pτ(m)) for some τ : mj → `+ d (51)

By discardability, we can assume that the chains are minimal, i.e. every bound parameter
p`+i for i = 1, . . . , d gets used. We consider two chains equal if they are α-convertible into
each other, meaning τ differs by a permutation of {`+ 1, . . . , `+ d}. The geometric meaning
of these chains will be discussed in Section 12.6.

For now, it sufficed to note that after our normalization procedure, each tI is a convex
combination of chains. Furthermore, by Proposition 12.5, if c1, . . . , cm is a list of the distinct
chains that occur in any of the leaves, we can give the leaves tI the uniform shape

tI =

(⊕ c1 . . . cm

wI1 . . . wIm

)
for appropriate weights wI j ∈N

We will show that this representation is a unique normal form for (?p)-free terms.

12.6 Proof of Completeness

Let x : m. We shall develop a geometric intuition for a chain

c = νi1,j1 p`+1. . . . νid,jd p`+d. x(pτ(1), . . . , pτ(m))

The measure-theoretic interpretation of c is a probability kernel JcK : I` → G(Im) where
I = [0, 1]. If we fix the free parameters ~p ∈ R`, the measure JcK(~p) is a pushforward of d
Beta-distributions to a hyperplane segment in Im along the inclusion map

hτ,~p : Id → Im, hτ(p`+1, . . . , p`+d) = (pτ(1), . . . , pτ(m))

By the minimality assumption on the chain, hτ,~p is injective and an isomorphism with its im-
age hyperplane segment Hτ,~p, which is exactly d-dimensional. Hence we call d the dimension
of the chain and Hτ,~p the support of the distribution JcK(~p). The position of Hτ,~p gets translated
by the coordinates of ~p. Because all this geometric information is captured in the map τ, we
call τ the support type of the chain.

p2 (3, 2)

p1 (3, 1)

p2

(2, 3)

p1

(1, 3)

(3, 3)

(1, 2) (2, 2)

(2, 1)

(1, 1)

(3, 4)

For example, each chain with two free parameters
p1, p2 and a variable x : 2 gives rise to a parameterized
distribution on the unit square. On the right, we illustrate
the ten possible supports that such distributions can have,
as subspaces of the square. In the graphic we write (i, j)
for νp3.νp4.x(pi, pj), momentarily omitting the subscripts
of ν because they do not affect the support. For instance,
the upper horizontal line corresponds to νp3.x(p3, p2); the
bottom-right dot corresponds to x(p2, p1); the diagonal
corresponds to νp3.x(p3, p3); and the entire square corre-
sponds to νp3.νp4.x(p3, p4). There are four subspaces of
dimension d = 0, five with d = 1, and one with d = 2. Notice that all subspaces are all
distinct as long as p1 6= p2.

103

The core of our normalization argument is that chains are linearly independent, i.e. mix-
tures of chains can be uniquely decomposed into their parts. For chains on the same sub-
space, this restricts to the usual independence of products of Beta distributions, and chains
on different supports are too different to interfere.

Proposition 12.8 Let c1, . . . , cn be distinct chains

p1 . . . p` | x1 : m1, . . . , xs : ms ` ci

where all indices of νir ,jr add up to ir + jr = k. Then the family of measures

{JciK(~p) ∈ G(Rm1 + . . . + Rms)}i=1,...,n

is linearly independent whenever all parameters pi are distinct.

PROOF Fix ~p ∈ I`. Measures on different copies of Imi are clearly independent, so we can
restrict ourselves to a single variable x : m.

Let the chain ci have dimension di and support type τi. Its denotation is the measure
JciK(~p) = (hi)∗µi on Im where µi is a product of di beta distributions, and hi : Idi → Im is the
injective affine map hi(p`+1, . . . , p`+d) = (pτi(1), . . . , pτi(m)). Now consider a vanishing linear
combination

ψ
def
= ∑

i
aiJciK(~p)

!
= 0 (52)

We show by induction over a dimension d that all ai must vanish: Our inductive hypothesis
is that ai = 0 whenever di < d. The base case d = 0 is empty, so now consider a chain cj of
dimension d. Let A ⊆ Id be an arbitrary Borel set, then the image hj(A) ⊆ Im is Borel because
hj is a measurable injection (e.g. [Kechris, 1987, §15A]). We now analyze the summands of
the following expression (corresponding to a restriction of ψ along hj)

ψ(hj(A)) = ∑
i

aiµi(h−1
i (hj(A)))

• If ci has dimension di < d, then ai = 0 by the inductive hypothesis, so the summand
vanishes

• If ci has dimension di > d, the set h−1
i (hj(A)) has at most dimension d. It is therefore a

nullset for µi, and the summand vanishes.

• If ci has dimension d but a different type, and all p1, . . . , p` are assumed distinct, then
the supports Hi and Hj are not identical. Therefore their intersection is at most (d− 1)-
dimensional and h−1

i (hj(A)) is a nullset for µi. The summand vanishes

• If ci has support type τj then hi = hj, so h−1
i (hj(A)) = A.

By assumption (52), we thus obtain the equation

∑
ci has support type τj

aiµi(A) = 0

Because all µi are multivariable Beta distributions with ir + jr = k on Id belonging to distinct
chains, they are linearly independent (Section 12.1). Therefore ai = 0 for all ci with subspace
type τj, in particular aj = 0 as desired. �

104

Corollary 12.9 Under the same assumptions as Proposition 12.8, the functionals

{JciK(−)(~p) : RIm1 × . . .×RIms → R}i=1,...,n

are linearly independent whenever all coordinates pi are distinct.

PROOF From the linear isomorphism between measures and integration functionals (Sec-
tion 4.4). �

Theorem 12.10 (Completeness) If Γ |∆ ` t, t′ and JtK = Jt′K, then Γ |∆ ` t = t′.

PROOF From the normalization procedure, we find numbers k, n, a list of distinct chains
c1, . . . , cs with i + j = n and weights (wI,j), (w′I,j) such that Γ |∆ ` t = Ck((tI)) and Γ |∆ `

t′ = Ck((t′I)) where tI =

(⊕ c1 . . . cs

wI,1 . . . wI,s

)
and t′I =

(⊕ c1 . . . cs

w′I,1 . . . w′I,s

)
. The interpre-

tations of these normal forms are given explicitly by

JtK(~f)(~p) = ∑
I,j

wI,j

wI
· bI,k(~p) · JcjK(~f)(~p) where wI = ∑

j
wI,j

and analogously for t′. Then JtK = Jt′K implies that for all ~f

∑
j

(
∑

I

(
wI,j

wI
−

w′I,j

w′I

)
bI,k(~p)

)
JcjK(~f)(~p) = 0.

By Corollary 12.9, this implies

∑
I

(
wI,j

wI
−

w′I,j

w′I

)
bI,k(~p) = 0 (53)

for every j whenever the parameters pi are distinct. However, since the left hand side of (53)
is continuous and the condition of distinct pi is dense, the equation must in fact hold for all
~p ∈ I`. By linear independence of the Bernstein basis polynomials, we obtain wI,j/wI =

w′I,j/w′I for all I, j. Thus, all weights agree up to rescaling and we can conclude Γ |∆ ` t =
t′. �

13 Extensionality and Syntactical Completeness

In this section we use the model completeness of the previous section to establish some
syntactical results about the theory of Beta-Bernoulli. Although the model is helpful in in-
forming the proofs, the statements of the results in this section are purely syntactical.

The ultimate result of this section is equational syntactical completeness (Theorem 13.5),
which says that there can be no further equations in the theory without it becoming incon-
sistent with discrete probability. In other words, assuming that the axioms we have included
are appropriate, they must be sufficient, regardless of any discussion about semantic models
or intended meaning. This kind of result is sometimes called ‘Post completeness’ after Post
proved a similar result for propositional logic.

105

The key steps towards this result are two extensionality results. These are related to the
programming language idea of ‘contextual equivalence’ (Section 3) as follows: Recall that
in a programming language, we often define a basic notion of equivalence from operational
considerations on closed ground terms: these are programs with no free variables that return
(say) booleans. We extend this to contextual equivalence on open terms by saying that t ≈ u
if, for all closed ground contexts C we have C[t] = C[u].

In our algebraic framework, our notion of equality too induces a basic notion of equiva-
lence on closed ground terms; those are terms − | x : 0, y : 0 ` u which correspond to closed
programs of boolean type, for they have two possible continuations x and y corresponding
to true and false. The extensionality results of this section say that, assuming one is con-
tent with this basic notion of equivalence, the equations that we axiomatize coincide with
contextual equivalence.

13.1 Extensionality for Closed Terms

We first show that when considering equality of terms, we may eliminate free parameters p
by closing them off using νi,j p.(−) for all possible values of i, j.

Proposition 13.1 (Extensionality for closed terms) Suppose Γ, q |∆ ` t and Γ, q |∆ ` u. If
Γ |∆ ` νi,jq.t = νi,jq.u for all i, j, then also Γ |∆ ` t = u.

PROOF We show the contrapositive; by the model completeness theorem (Theorem 12.10),
we can reason in the model rather than syntactically. The idea is that if two continuous
functions have the same integral with respect to all Beta distributions, they must be equal.

So we consider t and u such that JtK 6= JuK as functions RIm1 ×RImk → RI l+1
, and show

that there exist i, j such that Jνi,jq.tK 6= Jνi,jq.uK. By assumption there are ~f and ~p, q such that
JtK(~f)(~p, q) 6= JuK(~f)(~p, q) as real numbers.

We can find increasing sequences (in), (jn) of natural numbers such that in
in+jn → q as

n → ∞. The sequence of Beta distributions βin,jn satisfies the assumptions of Lemma 13.2
and therefore converges weakly to the Dirac distribution δq. This means for any contin-
uous h : I → R, the integral

∫
h(r)βin,jn(dr) converges to h(q) as n → ∞. In particu-

lar,
∫ (

JtK(~f)(~p, r) − JuK(~f)(~p, r)
)

βin,jn(dr) must become non-zero for sufficiently large n.
Therefore, there exists an n such that

∫
JtK(~f)(~p, r) βin,jn(dr) 6=

∫
JuK(~f)(~p, r) βin,jn(dr). So

Jνin,jn q.tK 6= Jνin,jn q.uK. �

In the proof, we make use of the following lemma about convergence to a Dirac distri-
bution. We won’t need convergence of random variables in the rest of our work, but refer to
[Kallenberg, 1997, Chapter 3] for reference.

Lemma 13.2 Let Xn be real-valued random variables with expectations µn such that µn → c and
Var(Xn)→ 0 for n→ ∞. Then the Xn converge in distribution to c.

PROOF We show the stronger statement that Xn converges to c in probability [Kallenberg,
1997, 3.7]: For all ε > 0, Chebyshev’s inequality implies that

Pr(|Xn − c| > ε) ≤ Pr(|Xn − µn|+ |µn − c| > ε)

= Pr(|Xn − µn| > ε− |µn − c|)
≤ Var(Xn) · (ε− |µn − c|)−2

106

for all sufficiently large n such that ε − |µn − c| > 0. By the assumptions, the last bound
vanishes for n→ ∞. �

13.2 Extensionality for Ground Terms

Next we show that we can eliminate continuation variables x1, . . . , xk by substituting them
with ground (boolean) expressions v1, . . . , vk: If ` t[v1 ...vk/x1 ...xk] = u[v1...vk/x1...xk] for all suit-
able ground v1 . . . vk, then ` t = u. From a programming perspective, this says that for
closed t, u, if C[t] = C[u] for all boolean contexts C, then t = u.

Proposition 13.3 (Extensionality for ground terms) Consider closed terms

− | x1 : m1 . . . xk : mk ` t, u

Suppose that whenever v1 . . . vk are terms with

(p1 . . . pm1 | y, z : 0 ` v1), . . . , (p1 . . . pmk | y, z : 0 ` vk)

we have− | y, z : 0 ` t[v1...vk/x1...xk] = u[v1 ...vk/x1 ...xk]. Then we also have− | x1 : m1 . . . xk : mk ` t = u.

PROOF Again, we show the contrapositive. Let ∆ = (x1 : m1 . . . xk : mk). Suppose we have
t and u such that ¬(− |∆ ` t = u). Then by the model completeness theorem (The-
orem 12.10), we have JtK 6= JuK as linear functions RIm1 × · · · × RImk → R. Since the
functions are linear, there is an index i ≤ k and a continuous function f : Imi → R with
JtK(0 . . . 0, f , 0 . . . 0) 6= JuK(0 . . . 0, f , 0 . . . 0). By the Stone-Weierstraß theorem, every such f
is a limit of polynomials, and so since JtK and JuK are continuous and linear, there has to be
a Bernstein basis polynomial bI,k : Rmi → R that already distinguishes them. This function
is definable, i.e. there is a a term p1, . . . , pmi | y, z : 0 ` w with JwK(1, 0) = bI,k. Define terms
vj = w for i = j and vj = z for i 6= j. Then

Jt[v1...vk/x1 ...xk]K(1, 0) = JtK(0, . . ., bI,k, . . ., 0) 6= JuK(0, . . ., bI,k, . . ., 0) = Ju[v1 ...vk/x1 ...xk]K(1, 0).

Then ¬
(
− | y, z : 0 ` t[v1...vk/x1...xk] = u[v1 ...vk/x1...xk]

)
follows from the model soundness prop-

erty (Proposition 12.2). �

Note that in programming terms, we have invoked the Stone-Weierstraß theorem to obtain
a definable boolean context which distinguishes t and u.

13.3 Relative Syntactical Completeness

We can now prove our syntactical completeness result; that is, no equations can be added
to our theory without creating a contradiction with rational probability. Rational probability
admits a similar theorem, which we discuss first; we can then use our extensionality results
to reduce Beta-Bernoulli to that case.

Proposition 13.4 (Neumann [1970]) If t, u are terms in the theory of rational convexity (Defini-
tion 11.1), then either t = u is derivable or it implies x +i:j y = x +i′ :j′ y for all nonzero i, i′, j, j′.

107

As an aside, we shall give the following interpretation of this result by borrowing some
standard terminology from universal algebra: Fix an algebraic signature such as the signa-
ture (+i:j) of rational convexity. A theory T is a set of formal equations (t = u) between
terms which is deductively closed under the rules of equational logic. The largest theory is the
inconsistent theory TMax which equates all terms.

In Proposition 5.4, we have seen that we can collapse probability to possibility by replac-
ing all operations (+p) for 0 < p < 1 by a semilattice operation (∨). The same holds for
rational convexity once we posit

x +i:j y = x +i′ :j′ y for all i, i′, j, j′ > 0 (54)

Let TCvx denote the theory of rational convexity, which is generated by the axioms of Def-
inition 11.1, and let TSL denote the theory generated by convexity and (54). Then Propo-
sition 13.4 states that the inclusion TCvx ⊂ TSL is an immediate succession in the poset of
theories. There exists no theory strictly between the two; adding any equation to TCvx results
in (54). In fact, it is folklore that TCvx ⊂ TSL ⊂ TMax is an immediate succession: The theory
TSL is therefore called syntactically complete or maximally consistent.

A consequence of syntactic completeness is that every nontrivial model of the theory is
complete. If a model validates an equation (t = u) which is not derivable, then that model
must be inconsistent. This result must be relativized for rational probability: Every model is
either complete, or a semilattice or inconsistent.

We show that the theory of Beta-Bernoulli is syntactically complete in the following
sense:

Theorem 13.5 The theory of Beta-Bernoulli is syntactically complete relative to the theory of rational
convexity: For all terms t and u, either the equation (t = u) is derivable, or it implies (54).

PROOF If (t = u) is not derivable, we use Propositions 13.1 and 13.3 to find a closed ground
substitution instances − | x : 0, y : 0 ` t̃, ũ such that (t̃ = ũ) is still not derivable. The
normalization procedure reduces t̃ and ũ to terms in the language of rational convexity only.
We apply Proposition 13.4 to derive (54). �

This shows that every model of Beta-Bernoulli which does not collapse rational proba-
bility is automatically complete for the entire theory.

Example 13.6 Consider the hypothetical equation

ν1,1 p.x(p, p) = ν1,1 p.ν1,1q.x(p, q)

expressing the statement that ν1,1 is deterministic (Section 6.3). This is obviously not deriv-
able, because it is incorrect measure-theoretically. Syntactically, this fact can be witnessed

by the ground substitution x(p, q) def
= (y ?q z) ?p z. Normalizing the result yields the equa-

tion y +1:2 z = y +1:3 z, which collapses rational probability (the normalization procedure is
showcased in Section 32.1). In programming syntax, the example equation would be written

(let p = new(1,1) in (p,p)) = (new(1,1), new(1,1))

108

and the distinguishing context is

C[−] = let (p,q)=(−) in if get(p) then get(q) else false

That is to say, the closed ground programs C[LHS] and C[RHS] necessarily have different
observable statistics.

13.4 Verification of Pólya’s urn

In the introduction we recalled the stateful implementation of the Beta-Bernoulli process us-
ing the module Polya. Our equational theory gives a recipe for relating that implementation
to BetaBernoulli:

The first step is to prove our equational theory sound with respect to Polya. We give
an operational semantics to Polya which introduces a notion of observational equivalence
on closed ground terms. We extend this to a notion of contextual equivalence ≈ctx between
open terms [Bizjak and Birkedal, 2015, §6]. We must now show that all ground substitution
instances of our axioms hold up to contextual equivalence?. Because contextual equivalence
is a congruence, we obtain that u = v implies u ≈ctx v for all ground terms u, v. From the
extensionality results (Propositions 13.1 and 13.3), we obtain that all derivable equations are
in fact validated in Polya. Finally, because contextual equivalence doesn’t collapse rational
probabilities, the syntactical completeness result implies that u = v is derivable iff u ≈ctx v.

?: It remains prove all ground instances of the axioms hold up to contextual equivalence.
A verification in this style has successfully been conducted by Marcin Szymczak (private
communication with Sam Staton). This task is simplified further as it is not necessary to
check that axioms (C1) and (D2) hold in contextual equivalence, because the axiomatized
equality on closed ground terms is independent of these axioms. To see this, notice that our
normalization procedure does not use (C1) or (D2) when the terms are closed and ground.
The remaining axioms are fairly straightforward, e.g. (Conj) is the essence of the urn scheme
and (D1) is garbage collection.

14 A Model of Synthetic Probability

By the general methods sketched in Section 3.7, we can think of our algebraic theory as
a combinatorial presentation a synthetic model of probability with contains the Beta and
Bernoulli distributions. Because this is an important technique, we will spell out some de-
tails. This also lets us use the internal languages Sections 3.1 and 7 as extended calculi for
Beta-Bernoulli and lets us make precise connections to the concepts of synthetic probability.

As a monad: Our theory gives rise to a monad on the (covariant) presheaf category [Fin, Set],
where Fin is the category of finite sets and functions. Because the theory is commutative and
discardable, the associated monad is a generalized probability monad P. Note that the do-
main of the presheaves encodes contexts of parameters and their substitutions. In our case,
simple renamings encoded by Fin suffice. (Formally, Finop is the Lawvere theory of the the-
ory of equality).

109

Let I denote the representable presheaf I(~p) = ~p. Every other representable Fin(n,−) is
isomorphic to In. The terminal presheaf is 1 = I0, and we encode the booleans as 2 = 1+ 1.
We interpret I to stand for an abstract unit interval object; syntactically, In stands for a
computation variable of arity n. A coproduct of representables ∑n

k=1 Imk thus represents a
context of computation variables (x1 : m1, . . . , xk : mk). Let F ⊆ [Fin, Set] denote the full
subcategory of such presheaves. We can begin defining the monad P on F as terms modulo
equations

P(Im1 + . . . + Imk)(~p) def
= {~p | x1 : m1, . . . , xk : mk ` u}/= (55)

The unit is given by the variable terms, and monadic bind is substitution of computations.
The structure thus defined is an enriched clone [Staton, 2013a]. Every presheaf is a sifted
colimit of F -objects, and we extend the definition (55) to a monad P on the full presheaf
category by preservation of that colimit. Note that P does not preserve coproducts because
there are nontrivial interactions between computations, like x +i:j y.

Applying the Yoneda lemma to (55) shows that to give a natural transformation In →
P(Im1 + . . . + Imk) is to give a term-modulo-equations p1, . . . , pn | x1 : m1, . . . , xk : mk ` u.
The monad can be seen to support the following operations

βi,j : 1→ P(I) get : I → P(2) flipm:n : 1→ P(2), i, j > 0, m + n > 0

given syntactically by the terms

x : 1 ` νi,j p.x(p) p | x : 0, y : 0 ` x ?p y x : 0, y : 0 ` x +m:n y

Proposition 14.1 To give a point 1→ P(2) is to give a rational probability 0 ≤ p ≤ 1.

PROOF Terms modulo equations − | x : 0, y : 0 ` u are precisely of the form x +m:n y, by the
normalization procedure and Proposition 12.5. �

This is in contrast with the local behavior of the presheaf P(2). For example, the morphism
get : I → P(2) is not merely a rational coin flip. By Proposition 12.7, the set P(2)(~p) consists
of tree diagrams, which can be described in terms of Bernstein polynomials.

It is interesting to consider the difference between the interval object I and P(2) in the
model. In measure-theoretic probability, those are isomorphic (Example 4.10), but not here:
For example, I has no points while P(2) contains the rational probabilities. In accordance
with Section 10.4, we could eschew the abstract type I altogether and define a variant of the
Beta distribution as a distribution over distributions betai,j : 1→ P(P(2)),

betai,j
def
= let p ← βi,j in [get(p)]

This removes the need for get in the language, as we sample a double distribution by mere
monadic sequencing, e.g.

let coin ← beta1,1 in coin = flip1:1

By turning the algebraic theory into a monad, we get semantics for a more fully-fledged
programming language which supports standard features such as if-then-else, pairs, thunks

110

and higher-order functions. Such semantics is adequate, but not designed with full abstrac-
tion in mind (such questions will concern us in Chapter V). With Beta and Bernoulli in the
language, more complicated distributions such as the categorical and Dirichlet distributions
are definable. This makes Beta-Bernoulli an important building blocks for Bayesian models.

As a Markov category: If we are merely interested to model ground Beta-Bernoulli com-
putation, we can turn our theory into a Markov category in a hands-on way: Recall the
subcategory F ⊆ [Inj, Set] of sums of representables from before. We note that F is closed
under products of presheaves, because Im × In ∼= Im+n and this extends to sums of repre-
sentables by distributivity13. We can thus form a Markov category BetaBern on the objects
of F whose morphisms are the Kleisli maps X → PY. As remarked by Staton in [Fritz, 2020,
6.2], we can use (55) to cast this definition in a purely combinatorial way: Objects are lists of
natural numbers (m1, . . . , mk) and morphisms (n1, . . . , nr) → (m1, . . . , mk) are collections of
terms-modulo-equations

(p1, . . . , pni | x1 : m1, . . . , xk : mk ` ui)i=1,...,r

The product operation defines a tensor on objects,

(m1, . . . , mk)⊗ (n1, . . . , nr)
def
= (m1 + n1, . . . , m1 + nr, . . . mi + nj, . . . , mk + mr)

and the copy-delete structure is given by nonlinear use of variables, e.g. copy(1) : (1)→ (2)
is given by copying of parameters p | x : 2 ` x(p, p).

Proposition 14.2 The measure-theoretic semantics (Definition 12.1)

J−K : BetaBern→ CHR J(m1, . . . , mk)K = [0, 1]m1 + . . . + [0, 1]mk (56)

induces a faithful functor to the Kleisli category of the Radon monad (26), which preserves Markov
structure. Similarly, the (complexified14) functional-analytic semantics (Definition 12.3) induces a
faithful Markov functor

J−K : BetaBern→ PUop J(m1, . . . , mk)K = C[0,1]m1 × . . .×C[0,1]mk (57)

By construction of our semantics, these functors are identified under the equivalence of Theorem 4.15.

From this perspective, BetaBern can be understood as a combinatorial characterization of
those probability kernels which are definable using only Beta, Bernoulli and if-then-else.

Conjugate priors Having turned our theory into a categorical model of probability, we can
apply the concepts of Chapter II to it. For example, the (Conj) axiom expresses the conjugate-
prior relationship between Beta- and Bernoulli in the categorical sense of Jacobs [2020].

13F is equivalent to FinFam(Finop), the finite coproduct completion of the Lawvere theory Finop

14using C*-algebras CX rather than RX to fit the setup of Section 4.4

111

Proposition 14.3 The distribution ψ : 1 → P(I × 2) given by a Beta sample and successive coin
flip

ψ = let p ← βi,j in let x ← get(p) in [(p, x)]

has a conditional distribution ψ|X : 2→ P(I) given by

ψ|X(x) = if x then βi+1,j else βi,j+1

PROOF We use distributivity to identify I × 2 with I + I . The distribution ψ : 1→ P(I + I)
is then represented by the term

x : 1, y : 1 ` νi,j p.x(p) ?p y(p) (58)

and its marginal ψ|X : 1→ P(1 + 1) can be seen to equal flipi:j, for

νi,j p.x ?p y = x +i:j y

The defining equation (38) of conditionals

let x ← flipi:j in let p ← ψ|X(x) in [(p, x)]

indeed recovers (58) by an application of (Conj), as

(νi+1,j p.x(p)) +i:j (νi,j+1 p.y(p)) = νi,j p.x(p) ?p y(p) �

We conjecture that in BetaBern, any distribution ψ : 1 → X × n has a conditional ψ|n :
n → X, where n = (0, . . . , 0) is a discrete sample space. The existence of these categori-
cal conditionals serves as a starting point for the inclusion of conditioning as a first-class
construct (see Chapter IV).

15 Conclusion and Related Work

We have demonstrated that the central notion of exchangeable random processes in Bayesian
inference admits an analysis in terms of basic concepts from programming language theory:
abstract types, commutativity and discardability. Those two axioms naturally places them
within the domain of synthetic probability theory.

We have illustrated this approach by showing that adding the conjugacy law to these
ingredients leads to a complete equational theory for the Beta-Bernoulli process. We proved
that this theory has a canonical syntactic and axiomatic status, regardless of the measure-
theoretic foundation. We have used the syntactic completeness result to formally relate the
Beta-Bernoulli process to a stateful implementation using Pólya’s urn. Other examples of
effects with stateful implementations that have the interface of pure probability are pseu-
dorandom number generators or name generation (gensym). These can be seen as a variant
of De Finetti’s theorem for program modules. Other recent treatments of this theorem ap-
proach it from the perspective of coalgebra [Jacobs and Staton, 2020] and Markov categories
[Fritz et al., 2021].

We have made use of parameterized algebraic theories as a way of presenting models
of synthetic probability in a concise way. We use similar techniques to present Gaussian

112

probability with conditioning (Chapter IV) and name generation (Proposition 25.19). Unlike
in [Staton, 2013b], our urns cannot be compared for equality, and adding such an operation
?p=q : (2 | [0, 0]) would in fact break the conjugacy axiom in its current form. Semantically,
the equality test (=) : I × I → 2 is not a natural transformation in [Fin, Set]. In nominal
sets, the category Inj of finite sets and injections replaces Fin to allow for equality testing
(Proposition 25.19).

Normal forms play a crucial role in all chapters of this thesis. They can variously be seen
as compiler optimizations, garbage collection schemes or symbolic inference techniques.
Our results furthermore open up the following avenues of research:

Firstly, our methods may be generalized to more complex hierarchical models. For exam-
ple, the Chinese Restaurant Franchise [Teh et al., 2006] can be implemented as a module with
three abstract types, f (franchise), r (restaurant), t (table), and functions newFranchise:()−>f,
newRestaurant:f−>r, getTable:r−>t, sameDish:t*t−>bool. Its various exchangeability prop-
erties correspond to commutativity/discardability in the presence of type abstraction. For
further examples, see [Staton et al., 2017b].

A more practical motivation for our work is to inform the design of module systems
for probabilistic programming languages. For example, ANGLICAN, CHURCH, HANSEI and
VENTURE already support nonparametric primitives [Kiselyov and Shan, 2010; Wu, 2013;
Mansinghka et al., 2014], although CHURCH and ANGLICAN do not have type systems. We
contend that abstract types are a crucial concept from the perspective of exchangeability.

113

Chapter IV

Compositional Semantics for Conditioning
SUMMARY: We develop a synthetic treatment of Bayesian inference which works in any
Markov category C with conditionals and a mild regularity assumption on the absolute con-
tinuity relation (Definition 19.4); this can be seen as a semantic validation of the symbolic
disintegration techniques of Shan and Ramsey [2017].

We introduce conditioning channels X ; Y which represent open programs with con-
ditioning effects up to observational equivalence. Our main result is that the category of
such conditioning channels forms a CD category Cond(C) (Theorem 19.6) which encapsu-
lates convenient properties of conditioning, such as commutativity, substitutivity and an
initialization principle (Section 19.3).

As an application, we apply this construction to give compositional semantics to a prob-
abilistic programming language with Gaussian random variables and a first-class exact con-
ditioning operator (Section 21.1). We give an algebraic presentation of that language (Sec-
tion 21) and draw analogies between exact conditioning and unification in logic program-
ming (Section 20).

This chapter is based on joint work with Sam Staton [Stein and Staton, 2021]. An imple-
mentation of the Gaussian language is available under [Stein, 2021].

16 Introduction

We identify two ways of expressing dependence between model and observed data in prob-
abilistic programming: scoring and exact conditioning.

Under scoring, we understand a construct like score or observe which records a likeli-
hood to re-weight the current execution trace of the probabilistic program. Such constructs
are wide-spread and available in popular languages such as STAN [Carpenter et al., 2017] or
WEBPPL [Goodman and Stuhlmüller, 2014]. Scoring with likelihoods from {0, 1} is some-
times called a hard constraint, as opposed to more general soft constraints. The prototypical
way of performing inference on scoring programs is likelihood-weighted importance sam-
pling. Hard constraints turn this into mere rejection sampling, because likelihood-zero traces
are discarded entirely. Replacing hard constraints by equivalent soft ones can thus be bene-
ficial for inference efficiency.

Under exact conditioning, we understand a construct here denoted E1 =:= E2 which ex-
presses that expressions E1, E2 shall be conditioned to be exactly equal. In finite probability,
this can be implemented in terms of a hard constraint by writing

score(if E1 == E2 then 1 else 0)

In a continuous setting, exact conditions are more powerful than that and cannot generally
be expressed as scoring any more. For example, the program

114

let x = normal(0,1) in x =:= 42; x

should return 42 deterministically. The scoring program

let x = normal(0,1) in score(if x == 42 then 1 else 0); x

will however reject almost every execution trace, because the probability that x = 42 is
zero. A major goal of this chapter is to rigorously define and study the properties of exact
conditioning. Aspects of this construct are present in other frameworks; exact condition-
ing queries can be addressed using symbolic disintegration in HAKARU [Shan and Ramsey,
2017] but (=:=) is no first-order construct in Hakaru. INFER.NET [Minka et al., 2018] does
allow exact conditioning on data in the following style15 and employs an approximate infer-
ence algorithm, which we believe gives exact answers for problems involving Gaussians:

Variable <double> x = Variable.GaussianFromMeanAndPrecision(0, 1);

x.ObservedValue = 42;

We provide two semantic analyses of exact conditioning in a simple Gaussian language: a
denotational semantics, and an equational axiomatic semantics, which we prove coincide for
closed programs. Our denotational semantics is based on the notion of conditioning channels,
which are a new and general construction on Markov categories.

Case study: A Gaussian Programming Language with Exact Conditions Exact condition-
ing has the advantage of decoupling the generative model cleanly from the data observations
phase. Consider the following example of a Gaussian process regression (a.k.a. “kriging”):

A Gaussian process is a type of distribution over functions. We’ll evaluate that function
at a fixed list xs of inputs of interest, say ys = gp_sample(xs). The distribution of ys is now
an N-dimensional multivariate Gaussian vector where N = |xs|; different samples of ys are
shown as the graphs on the left of Figure 4.

Say we know the values ŷ1, . . . , ŷk of the random function at fixed inputs x1, . . . , xk, and
wish to predict how that affects the distribution of the unknown values. This is completely
straightforward to express using exact conditioning (posterior in Figure 4):

ys = gp_sample(xs)

for i = 1 to k:

ys[xi] =:= ŷi

Figure 3: Exact inference for a Gaussian process

15see https://dotnet.github.io/infer/userguide/Learning%20a%20Gaussian%20tutorial.
html

115

https://dotnet.github.io/infer/userguide/Learning%20a%20Gaussian%20tutorial.html
https://dotnet.github.io/infer/userguide/Learning%20a%20Gaussian%20tutorial.html

Figure 4: GP prior and posterior with k = 4 exact observations

The same program is difficult to express compositionally without exact conditioning:
Using soft conditions, the observations (xi, ŷi) would need to be passed into gp_sample and
observe commands need to be issued in-place, breaking the separation of model and infer-
ence.

No style of probabilistic modelling is immune to fallacies and paradoxes. Exact condi-
tioning is indeed sensitive in this regard in general (Section 22.1), and so it is important to
show that where it is used, it is consistent in a compositional way. To simplify our kriging
example further, we consider the following concrete variation with a Gaussian random walk:
Suppose that the observation points are at (0, 20, 40, 60, 80, 100) and consider the model

ys[0] = normal(0,1)

for i = 1 to 100:

ys[i] = ys[i−1] + normal(0,1)
for j = 0 to 5:

ys[20*j] =:= c[j]

To illustrate the power of compositional reasoning, we note that exact conditioning here is
first-class, and as we will show, it is consistent to reorder programs as long as the dataflow
is respected (Proposition 19.10). So this random walk program is equivalent to:

ys[0] = normal(0,1)

ys[0] =:= c[0]

for i = 1 to 100:

ys[i] = ys[i−1] + normal(0,1)
if i % 20 == 0: ys[i] =:= c[i % 20]

We can now use a substitution law and initialization principle to simplify the program to

ys[0] = c[0]

for i = 1 to 100:

if i % 20 == 0:

ys[i] = c[i % 20]

(ys[i] − ys[i−1]) =:= normal(0,1)
else:

ys[i] = ys[i−1] + normal(0,1)

116

The constraints are now all ‘soft’, in that they relate an expression with a distribution, and
so this last program could be run with a Monte Carlo simulation in Stan or WebPPL. Indeed,
the soft-conditioning primitive observe can be defined in terms of exact conditioning as

observe(D,x) ≡ (lety = sample(D) in x =:= y)

as explained in Section 20.1. Our language is by no means restricted to kriging. For example,
we can use similar techniques to implement and verify a simple Kálmán filter.

In Section 17, we provide an operational semantics for such a language, in which there are
two key commands: drawing from a standard normal distribution (normal()) and exact con-
ditioning (=:=). The operational semantics is defined in terms of configurations (t, ψ) where
t is a program and ψ is a state, which here is a Gaussian distribution. Each call to normal()
introduces a new dimension into the state ψ, and conditioning (=:=) alters the state ψ, using
a canonical form of conditioning for Gaussian distributions (Section 17.1).

For the program in Figure 3, the operational semantics will first build up the prior distri-
bution shown on the left in Figure 4, and then the second part of the program will condition
to yield a distribution as shown on the right. But for the other programs above, the condi-
tioning will be interleaved in the building of the model.

In stateful programming languages, composition of programs is often complicated and
local transformations are difficult to reason about. But, as we now explain, we will show
that for the Gaussian language, compositionality and local reasoning are straightforward.
For example, as we have already illustrated:

• Program lines can be reordered as long as dataflow is respected. That is, the commuta-
tivity equation (Comm) remains valid for programs with conditioning

let x = u in

let y = v in t
≡ let y = v in

let x = u in t

where x not free in v and y not free in u.

• We have a substitution law: if t =:= u appears in a program, then later occurrences of t
may be replaced by u.

(t =:= u); v[t/x] ≡ (t =:= u); v[u/x] (59)

• As a special base case, if we condition a normal variable on a constant c, then that
variable is initialized to this value

let x = normal() in (x =:= c); t ≡ t[c/x] (60)

Denotational Semantics and the Cond Construction In Section 21.1, we show that this
compositional reasoning is valid by using a denotational semantics. For a Gaussian lan-
guage without conditioning, we can easily interpret terms as noisy affine-linear functions,
x 7→ Ax + c + N (Σ). The exact conditioning requires a new construction for building a

117

semantic model. In fact this construction is not at all specific to Gaussian probability and
works generally.

Our conditioning construction starts from a Markov category C, corresponding as a prob-
abilistic programming language without conditioning. We build a new symmetric monoidal
category Cond(C) which is conservative over C but which contains a conditioning construct.
This construction builds on an analysis of conditional probabilities from the Markov cate-
gory literature, which captures conditioning purely in terms of categorical structure: there is
no explicit Radon-Nikodým theorem, limits, reference measures or in fact any measure the-
ory at all. The good properties of the Gaussian language generalize to this abstract setting,
as they follow from universal properties alone.

The category Cond(C) has the same objects as C, but a morphism is reminiscent of the
decomposition of the program in Figure 4: a pair of a purely probabilistic morphism together
with an observation. These morphisms compose by composing the generative parts and
accumulating the observations (for a graphical representation, see Figure 5). The morphisms
are considered up-to a natural contextual equivalence. We prove some general properties
about Cond(C):

(i) Proposition 19.12: Cond(C) is consistent, in that no distinct unconditional distributions
from C are equated in Cond(C).

(ii) Proposition 19.10: Cond(C) allows programs to be reordered according to their dataflow
graph, i.e. it satisfies the interchange law of monoidal categories.

Returning to the specific case study of Gaussian probability, we show that we have a canon-
ical interpretation of the Gaussian language in Cond(Gauss), which is fully abstract (Theo-
rem 21.2). In consequence, the principles of reordering and consistency hold for the contex-
tual equivalence induced by the operational semantics.

Equational Presentation Our second semantic analysis (Section 21) has a more syntactic
and concrete flavor. We leave the generality of Markov categories and focus again on the
Gaussian language. We present an equational theory for programs and derive normal forms.

Our equational theory is surprisingly simple. The first two equations are

(let x = normal() in ()) = () let x1 = normal(), . . . , xn = normal() in U~x

= let x1 = normal(), . . . , xn = normal() in~x

The left equation is discardability. In the right equation, U must be an orthogonal matrix,
and we are using shorthand for multiplying a vector by a matrix. These two equations
are enough to fully axiomatize the fragment of the Gaussian language without condition-
ing (Proposition 21.3). In Section 21 we introduce a concise notation, writing the first ax-
iom as νx.r[] = r[]. One instance of the second axiom with a permutation matrix for U is
νx.νy.r[x, y] = νy.νx.r[x, y], reminiscent of name generation in the π-calculus [Milner et al.,
1992] or ν-calculus in Chapter V. The remaining axioms focus on conditioning. There are
commutativity axioms for reordering parts of programs, as well as the substitution and ini-
tialization laws considered above, (59), (60). Finally there are two axioms for eliminating a
condition that is tautologous (a =:= a) or impossible (0 =:= 1).

118

Together, these axioms are consistent, which we can deduce by showing them to hold
in the Cond model. To moreover illustrate the strength of the axioms, we show two normal
form theorems by merely using the axioms. Here normaln() describes the n-dimensional
standard normal distribution.

• Theorem 21.8: any closed program is either derivably impossible (0 =:= 1) or derivably
equal to a condition-free program of the form A ∗ normaln() +~c.

• Theorem 21.10: any program of unit type (with no return value) is either derivably
impossible (0 =:= 1) or derivably equal to a soft constraint, i.e. a program of the form
A ∗~x =:= B ∗ normaln() +~c. We also give a uniqueness criterion on A, B and~c.

16.1 Outline

In Section 17, we present a minimalist language with exact conditioning for Gaussian prob-
ability, with the purpose of studying the abstract properties of conditioning. Despite its sim-
plicity, the language can express interesting models such as Gaussian processes or Kálmán
filters. An implementation is available under [Stein, 2021].

In Section 18, we develop an abstract account of inference problems purely in terms of
Markov categories. We then introduce conditioning channels in Section 19, which extend a
Markov category C to a CD category Cond(C) in which conditioning is internalized as a
morphism. The Gaussian language is recovered as the internal language of Cond(Gauss)

where the Markov category Gauss captures conditioning-free Gaussian probability.
We give three semantics for the language – operational (Section 17), denotational (Sec-

tion 21.1) and axiomatic (Section 21). We show that the denotational semantics is fully ab-
stract (Theorem 21.2) and that the axiomatic semantics is strong enough to derive normal
forms (Theorem 21.10). This justifies properties like commutativity and substitutivity for
the language. Thus probabilistic programming with exact conditioning can serve as a prac-
tical foundation for compositional statistical modelling.

17 A Language for Gaussian Probability

In Section 17.2, we formally introduce a typed language (Section 3) for Gaussian probability,
and provide an operational semantics for it (Section 17.3).

17.1 Recap of Gaussian Probability

We briefly recall Gaussian probability, by which we mean the treatment of multivariate Gaus-
sian distributions and affine-linear maps (e.g. [Lauritzen and Jensen, 1999]). A (multivariate)
Gaussian distribution is the law of a random vector X ∈ Rn of the form X = AZ + µ where
A ∈ Rn×m, µ ∈ Rn and the random vector Z has components Z1, . . . , Zm ∼ N (0, 1) which
are independent and standard normally distributed with density function

ϕ(x) =
1√
2π

e−
1
2 x2

119

The distribution of X is fully characterized by its mean µ and the positive semidefinite co-
variance matrix Σ. Conversely, for any µ and positive semidefinite matrix Σ there is a unique
Gaussian distribution of that mean and covariance denotedN (µ, Σ). The vector X takes val-
ues precisely in the affine subspace S = µ + col(Σ) where col(Σ) denotes the column space
of Σ. We call S the support of the distribution.

This defines a small convenient fragment of probability theory: Affine transformations of
Gaussians remain Gaussian. Furthermore, conditional distributions of Gaussians are again
Gaussian. This is known as self-conjugacy. If we decompose an (m + n)-dimensional Gaus-
sian vector X ∼ N (µ, Σ) into components X1, X2 with

X =

(
X1

X2

)
, µ =

(
µ1

µ2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
where Σ21 = ΣT

12

then the conditional distribution X1|(X2 = a) of X1 conditional on X2 = a isN (µ′, Σ′) where

µ′ = µ1 + Σ12Σ+
22(a− µ2) Σ′ = Σ11 − Σ12Σ+

22Σ21 (61)

and Σ+
22 denotes the Moore-Penrose pseudoinverse.

This formula becomes particular simple if we condition on a single real-valued variable:
Let X ∼ N (µ, Σ) and let Z = uX for some u ∈ Rn×1, then the covariance of (X, Z) decom-
poses with entries

Σ12 = ΣuT, σ22 = uΣuT

and the conditional distribution of X|(X = a) is N (µ′, Σ′) with

µ′ = µ +
a

σ22
ΣuT, Σ′ = Σ− σ−1

22 ΣuTuΣ (62)

whenever σ22 > 0. If σ22 = 0 and uµ = a, the condition is tautologous 0 = 0, so we let
µ′ = µ, Σ′ = Σ, and otherwise the condition is infeasible.

Example 17.1 Let X, Y ∼ N (0, 1) be independent and Z = X − Y. The joint distribution of
(X, Y, Z) is N (0, Σ) with covariance matrix

Σ =

1 0 1
0 1 −1
1 −1 2

The conditional distribution of (X, Y) given Z = 0 has covariance matrix

Σ′ =
(

1 0
0 1

)
− 1

2

(
1
−1

)
·
(
1 −1

)
=

(
0.5 0.5
0.5 0.5

)
Note that the posterior distribution is equivalent to the model

X ∼ N (0, 0.5), Y = X

Borel’s paradox is an important subtlety that occurs when conditioning on the equality
of random variables X = Y. The original formulation involves conditioning a uniform point
on a sphere to lie on a great circle, but we will use Borel’s paradox to refer to any situation

120

where conditioning on equivalent equations leads to different outcomes (e.g. [Shan and
Ramsey, 2017]). For example, if instead of the condition X − Y = 0 in Example 17.1 we had
chosen the equivalent equations X/Y = 1 or even [X = Y] = 1, we would have obtained
different posteriors:

Example 17.2 (Borel’s paradox) If X, Y ∼ N (0, 1), then conditioned on (X/Y = 1), the
variable X can be shown to have density |x|e−x2

[Proschan and Presnell, 1998]. Under the
boolean condition [X = Y] = 1, the inference problem is considered infeasible because the
model X, Y ∼ N (0, 1), Z = [X = Y] is measure-theoretically equal to X, Y ∼ N (0, 1), Z = 0
and conditioning on 0 = 1 is inconsistent.

We will address Borel’s paradox repeatedly (Section 20), and see that careful type-theoretic
phrasing helps alleviate some of its seemingly paradoxical nature (Section 22.1).

17.2 Types and Terms of the Gaussian language

We now describe a language for Gaussian probability and conditioning. The core language
resembles first-order OCaml with a construct normal() to sample from a standard Gaussian,
and conditioning denoted as (=:=). Types τ are generated from a basic type R denoting real
or random variable, pair types and unit type I.

τ ::= R | I | τ ∗ τ

Terms of the language are

e ::= x | e + e | α · e | β | (e, e) | ()
| let x = e in e | let (x, y) = e in e

| normal() | e =:= e

where α, β range over real numbers. Typing judgements are

Γ, x : τ, Γ′ ` x : τ Γ ` () : I
Γ ` s : σ Γ ` t : τ

Γ ` (s, t) : σ ∗ τ

Γ ` s : R Γ ` t : R
Γ ` s + t : R

Γ ` t : R
Γ ` α · t : R Γ ` β : R

Γ ` normal() : R
Γ ` s : R Γ ` t : R

Γ ` (s =:= t) : I

Γ ` s : σ Γ, x : σ ` t : τ

Γ ` let x = s in t : τ

Γ ` s : σ ∗ σ′ Γ, x : σ, y : σ′ ` t : τ

Γ ` let (x, y) = s in t : τ

Our language is precisely the CD-calculus (Section 7), with base type R and signature

(+) : R ∗ R→ R, α · (−) : R→ R, β : I→ R, normal : I→ R, (=:=) : R ∗ R→ I (63)

121

This will give us a clear path to denotational semantics: In Section 21.1, we will indeed
identify our language as the internal language of an appropriate CD category with an exact
conditioning morphism.

We use standard syntactic sugar for sequencing s; t, identifying the type Rn = R ∗ (R ∗ . . .)
with vectors and for matrix-vector multiplication A · ~x. For σ ∈ R and e : R, we define
normal(x, σ2) ≡ x + σ · normal(). More generally, for a covariance matrix Σ, we write
normal(~x, Σ) = ~x + A · (normal(), . . . , normal()) where A is any matrix such that Σ = AAT.
We can identify any context and type with Rn for suitable n.

17.3 Operational Semantics

Our operational semantics is call-by-value. Calling normal() allocates a latent random vari-
able, and a prior distribution over all latent variables is maintained. Calling (=:=) updates
this prior by symbolic inference according to the formula (61).

Values v and redexes ρ are defined as

v ::= x | (v, v) | v + v | α · v | β | ()
ρ ::= normal() | v =:= v | let x = v in e | let (x, y) = v in e

A reduction context C with hole [−] is of the form

C ::= [−] |C + e | v + C | r · C |C =:= e | v =:= C

| let x = C in e | let (x, y) = C in e

Every term is either a value or decomposes uniquely as C[ρ]. We define a reduction relation
for terms: A configuration is either a dedicated failure symbol ⊥ or a pair (e, ψ) where ψ is a
Gaussian distribution on Rr and z1 : R, . . . , zr : R ` e. The latent variables are taken from a
distinct supply of variable names {zi : i ∈N}. We first define reduction on redexes:

(i) Calling normal() allocates a fresh latent variable and adds an independent dimension
to the prior

(normal(), ψ) B (zr+1, ψ⊗N (0, 1))

(ii) To define conditioning, note that every value z1 : R, . . . , zr : R ` v : R defines an affine
function Rr → R. In order to reduce (v =:= w, ψ), we X ∼ ψ and define the auxiliary
variable Z = v(X) − w(X). If 0 lies in the support of Z, we denote by ψ|v=w the
outcome of conditioning X on Z = 0, and reduce

(v =:= w, ψ) B ((), ψ|v=w)

Otherwise (v =:= w, ψ) B ⊥, indicating that the inference problem has no solution. To
be completely, we find u ∈ R1×r and b ∈ R such that Z = uX + b and condition on
Z = 0 using formula (62).

(iii) Let bindings are standard

(let x = v in e, ψ) B (e[v/x], ψ)

(let (x, y) = (v, w) in e, ψ) B (e[v/x, w/y], ψ)

122

(iv) Lastly, under reduction contexts, if (ρ, ψ) B (e, ψ′) we define (C[ρ], ψ) B (C[e], ψ′). If
(ρ, ψ) B ⊥ then (C[e], ψ) B ⊥.

Proposition 17.3 Every closed program ` e : Rn, together with the empty prior ‘!’, deterministically
reduces to either a configuration (v, ψ) or ⊥.

We consider the observable result of this execution either failure, or the pushforward distri-
bution v∗ψ on Rn, as this distribution could be sampled from empirically.

Example 17.4 The program

let (x, y) = (normal(), normal()) in x =:= y; x + y

reduces to (z1 + z2, ψ) where

ψ = N
((

0
0

)
,
(

0.5 0.5
0.5 0.5

))
The observable outcome of the run is the pushforward distribution (1 1)∗ψ = N (0, 2) on R.

One goal of this chapter is to study properties of this language compositionally, and
abstractly, without relying on any specific properties of Gaussians. The crucial notion to
investigate is contextual equivalence.

Definition 17.5 We say Γ ` e1, e2 : τ are contextually equivalent, written e1 ≈ e2, if for all
closed contexts K[−] and i, j ∈ {1, 2}

(i) when (K[ei], !) B∗ (vi, ψi) then (K[ej], !) B∗ (vj, ψj) and (vi)∗ψi = (vj)∗ψj

(ii) when (K[ei], !) B∗ ⊥ then (K[ej], !) B∗ ⊥

We study contextual equivalence by developing a denotational semantics for the Gaus-
sian language (Section 21.1), and proving it fully abstract (Theorem 21.2). We furthermore
show that these semantics can be axiomatized completely by a set of program equations
(Section 21). We also note nothing conceptually limits our language to only Gaussians. We
are running with this example for concreteness, but any family of distributions which can
be sampled and conditioned can be used. So we will take care to establish properties of the
semantics in a general setting.

18 Synthetic Foundations of Conditioning

We’ll now generalize the conditioning procedure from Gaussians to arbitrary Markov cate-
gories; the key synthetic ingredients are conditionals (Section 8.4), almost-sure equality and
absolute continuity (Section 8.2). Following Convention 8.9, we will use the relation x � µ

when we speak of supports and avoid the stronger but less widely applicable notion of Sec-
tion 8.3.

123

Let C be a Markov category with all conditionals. In order to describe statistical infer-
ence categorically, we introduce the following terminology: An observation is a fixed piece of
data, that is a deterministic state o : I → K. An inference problem (K, ψ, o) is given by a joint
distribution ψ : I → X ⊗ K called the model and an observation o : I → K. The problem is
then to infer the posterior distribution over X conditioned on the observation o.

An inference problem can either succeed, or fail if the observation o is inconsistent with
the model. We say (K, ψ, o) succeeds if the observation lies in the support of the model, i.e.
o � ψK. In that case, a solution to the inference problem is the composite ψ|K ◦ o : I → X
where ψ|K : K → X is a conditional to ψ with respect to K. The solution is also referred to as
a posterior. If o 6� ψK, we say that the inference problem fails.

Proposition 18.1 Solutions to inference problems are unique, i.e. if (K, ψ, o) succeeds and ψ|K, ψ|′K
are two conditionals then ψ|K(o) = ψ|′K(o).

PROOF Because conditionals are not unique, we need to make use of the assumption o �
ψK. It is however immediate from the definitions that conditionals are almost surely unique,
i.e. ψ|K =ψK ψ|′K. From the definition of absolute continuity, we derive ψ|K =o ψ|′K, which
implies ψ|K(o) = ψ|′K(o). �

We call two inference problems observationally equivalent if they both fail, or they both
succeed with equal posteriors. We remark that our treatment is necessary if suitable program
equations like (59) and (60) are to hold: To a programmer, the inference problem (K, ψ, o)
represents a closed program of the form

let (x, k) = ψ in (k:= o); x (64)

where k:= o is an exact conditioning operator. Finding a conditional for ψ amounts to restruc-
turing the dataflow of (64) as

let k = ψK in let x = ψ|K(k) in (k:= o); x

From commutativity and the initialization principle, we can simplify the problem as

(let k = o in let x = ψ|K(k) in x) = ψ|K(o)

if k � ψK, or obtain failure otherwise. This mirrors the symbolic approach of Shan and
Ramsey [2017].

For the rest of this section, we will give concrete instances of this abstract machinery and
show that it matches the conditioning procedure from Section 17. We begin by formalizing
Gaussian probability in a Markov category:

Definition 18.2 (Fritz [2020, §6]) The symmetric monoidal category Gauss has objects n ∈
N, which represent the affine space Rn, and m⊗ n = m + n. Morphisms m → n are tuples
(A, b, Σ) where A ∈ Rn×m, b ∈ Rn and Σ ∈ Rn×n is a positive semidefinite matrix. The tuple
represents a stochastic map f : Rm → Rn that is affine-linear, perturbed with multivariate
Gaussian noise of covariance Σ, informally written

f (x) = Ax + b +N (Σ) or Ax +N (b, Σ)

124

Such morphisms compose sequentially and in parallel in the expected way, with noise accu-
mulating independently

(A, b, Σ) ◦ (C, d, Ξ) = (AC, Ad + b, AΞAT + Σ)

(A, b, Σ)⊗ (C, d, Ξ) =
((

A 0
0 C

)
,
(

b
d

)
,
(

Σ 0
0 Ξ

))
In Gauss, we furthermore have ability to introduce correlations and discard values by

means of the following affine maps, giving it Markov structure

copyn : Rn → Rn+n, x 7→ (x, x) deln : Rn → R0, x 7→ ()

Like BetaBern in Section 14, Gauss is a compact combinatorial characterization of a Markov
subcategory of BorelStoch.

Proposition 18.3 A morphism (A, b, Σ) in Gauss is deterministic iff Σ = 0, i.e. there is no random-
ness involved.

PROOF Write f = (A, b, Σ), then the covariance matrices of f ◦ copy and copy ◦ f are(
Σ 0
0 Σ

)
and

(
Σ Σ
Σ Σ

)
respectively. Thus f is copyable iff Σ = 0. �

It follows that the deterministic subcategory Gaussdet is the category Aff consisting of the
spaces Rn and affine maps between them.

Proposition 18.4 (Fritz [2020, 11.8]) Gauss has all conditionals. This is known as the self-conjugacy
of Gaussians [Jacobs, 2020]. The conditions can be computed by an explicit formula such as (61).

Recall the notion of support for a Gaussian random variable. If µ = N (b, Σ), we write
supp(µ) for the affine subspace b + col(Σ). This agrees with the categorical phrasing of sup-
port (Convention 8.9) and is in fact a representable support in the sense of Section 8.3, as we
show now:

Proposition 18.5 For a distribution µ : 0→ m in Gauss, let S = supp(µ) be its support. Then

(i) If f , g : m → n are morphisms, then f =µ g iff f x = gx for all x ∈ S, seen as deterministic
states x : 0→ m.

(ii) If ν : 0→ m then µ� ν iff the support of µ is contained in the support of ν

(iii) In particular for x : 0→ m deterministic, x � µ iff x ∈ S.

PROOF The characterization (i) of µ-almost sure equality is a strengthening of Example 8.6:
The maps f , g : m → n can be faithfully considered BorelStoch maps f , g : Rm → G(Rn),
so we have f (x) = g(x) for µ-almost all x. Because f , g are continuous kernels and µ is
equivalent to the Lebesgue measure on the support S, the equality almost everywhere can
be strengthened to equality on all of S.

This immediately implies that the support condition is sufficient in (ii). To see that it is
necessary, let x ∈ supp(µ) \ supp(ν). Then we can find two affine functions f , g which agree
on supp(ν) but f (x) 6= g(x). Now f =ν g but not f =µ g, hence µ 6� ν. �

125

Supports also work as expected in FinStoch but not in BorelStoch.

Proposition 18.6 In FinStoch, we have x � µ iff µ(x) > 0. In BorelStoch, we have x � µ iff
µ({x}) > 0.

PROOF The arguments follow from [Fritz, 2020, 13.2,13.3]. For BorelStoch, if µ({x0}) = 0
we consider the measurable functions f (x) = [x = x0], g(x) = 0 and obtain f =µ g but
f (x0) 6= g(x0) showing x0 6� µ. This argument also shows that representable supports
don’t exist in BorelStoch. For that reason, we’ll use� the rest of this chapter. �

This means that in BorelStoch-probability, we can only condition on observations of pos-
itive probability; this agrees with the classical definition of conditional probability

P(A|B) def
=

P(A ∩ B)
P(B)

if P(B) > 0

In the smaller category Gauss, we can also condition on observations of probability zero. The
dependence on the surrounding category is condensed in the following example.

Example 18.7 Let µ = N (0, 1) be the standard normal distribution. When considered in
Gauss, its support is R and in particular for all x0 ∈ R we have x0 � µ. In BorelStoch, there
is no x0 with x0 � µ.

We give an example of how to use the categorical conditioning machinery in practice.

Example 18.8 The statistical model from Example 17.1

X ∼ N (0, 1); Y ∼ N (0, 1); Z = X−Y

corresponds to the inference problem µ : 0→ 3 with covariance matrix

Σ =

1 0 1
0 1 −1
1 −1 2

and observation Z = 0. A conditional with respect to Z is

µ|Z(z) =
(

0.5
0.5

)
z +N

(
0.5 0.5
0.5 0.5

)
which can be verified by calculating (38). The marginal µZ = N (2) is supported on all of R,
hence 0� µZ and by Proposition 18.1 the composite

µ|Z(0) = N
(

0.5 0.5
0.5 0.5

)
is uniquely defined and represents the posterior distribution over (X, Y).

126

We close with the observation that the fragment of the Gaussian language without con-
ditioning (=:=) can be interpreted in the internal language (Section 7) of the category Gauss.
That is to say, there is a canonical denotational semantics of the Gaussian language where
we interpret types and contexts as objects of Gauss, e.g. JRK = 1 and J(x : R, y : R⊗ R)K = 3.
Terms Γ ` t : A are interpreted as stochastic maps Ax + b +N (Σ). This is all automatic once
we recognize that addition (+) : 2 → 1, scaling α · (−) : 1 → 1, constants β : 0 → 1 and
sampling N (1) : 0 → 1 are morphisms in Gauss which interpret the conditioning-free part
of the signature (63).

In the next section, we will show that the full Gaussian language with conditioning (=:=)
is the internal language of a CD category. The fact that commutativity holds is non-trivial.
We note that the Gaussian language cannot reasonably be the internal language of a Markov
category, because conditioning (=:=) is not discardable.

19 Compositional Conditioning – The Cond Construction

In the last section, we have seen that Markov categories with conditionals allow a general
recipe for conditioning. In order to give compositional semantics to a language with condi-
tioning, we need to internalize conditioning as a morphism, that is talk about open inference
problems or conditioning channels.

Let C be a Markov category, then a conditioning channel X ; Y is given by a morphism
X → Y⊗ K together with an observation (i.e. deterministic state) o : I → K. This represents
an intensional open program of the form

x : X ` let (y, k) : Y⊗ K = f (x) in (k:= o); y (65)

We think of K as an additional hidden output wire, to which we attach the observation o.
Such programs compose in the obvious way, by aggregating observations (Figure 5). Two
representations (65) are deemed equivalent if they contextually equivalent, that is roughly
they compute the same posteriors in all contexts.

For modularity, we present the construction in two stages: In the first stage (Section 19.1)
we form a category Obs(C) on the same objects as C consisting of the data (65) but without
any quotienting. This adds, purely formally, for every observation o : I → X a conditioning
effect (:= o) : X ; I. In the second stage (Section 19.2) – this is the core of the construction –
we relate these morphisms to the conditionals present in C, that is we quotient by contextual
equivalence. The resulting quotient is called Cond(C). Under mild assumptions, this will
have the good properties of a CD category, showing that conditioning stays commutative.

19.1 Obs – Open Programs with Observations

For ease of notation, we will assume C is a strictly monoidal category, that is all associators
and unitors are identities (this poses no restriction by [Fritz, 2020, 10.17]). We note that all
constructions can instead be performed purely string-diagrammatically.

127

Definition 19.1 The following data define a symmetric premonoidal category (Section 3.4)
called Obs(C):

• the object part of Obs(C) is the same as C

• morphisms X ; Y are tuples (K, f , o) where K ∈ ob(C), f ∈ C(X, Y ⊗ K) and o ∈
Cdet(I, K), representing (65)

• The identity on X is IdX = (I, idX, !) where ! = idI .

• Composition is defined by

(K′, f ′, o′) • (K, f , o) = (K′ ⊗ K, (f ′ ⊗ idK) f , o′ ⊗ o).

• if (K, f , o) : X ; Y and (K′, f ′, o′) : X′ ; Y′, their (premonoidal) tensor product is
defined as

(K′ ⊗ K, (idY′ ⊗ swapK′,Y ⊗ idK)(f ′ ⊗ f), o′ ⊗ o)

• There is an identity-on-objects functor J : C → Obs(C) that sends f : X → Y to
(I, f , !) : X ; Y. This functor is strict premonoidal and its image central

• Obs(C) inherits symmetry and comonoid structure

Recall that a symmetric premonoidal category is like a symmetric monoidal category
where the interchange law (4) need not hold. This is the case because Obs(C) does not yet
identify observations arriving in different order16. This will be remedied automatically later
when passing to the quotient Cond(C). Composition and tensor can be depicted graphically
as in Figure 5, where dashed wires indicate condition wires K and their attached observa-
tions o. For an observation o : I → K, the conditioning effect (:= o) : K ; I is given by
(I, idK, o).

f

f ′

Z o′ o

Y

X

f ′

X′

f

X

o′ oY′ Y

Figure 5: Composition and tensoring of morphisms in Obs

16see (101) in Section 30.5 for a graphical representation

128

19.2 Cond – Contextual Equivalence of Open Programs

Let us now assume that C has all conditionals. We wish to quotient Obs-morphisms, relating
them to the conditionals which can be computed in C. We know how to interpret closed
programs, because a state (K, ψ, o) : I ; X is precisely an inference problem as in Section 18:
If o 6� ψK, the observation does not lie in the support of the model and conditioning fails. If
not, we form the conditional ψ|K in C and obtain a well-defined posterior µ|K ◦ o.

This notion of observational equivalence defines an equivalence relation on states I ; X
in Cond(C). We will extend this relation to a congruence on arbitrary morphisms X ; Y by
a general categorical construction.

Definition 19.2 Given two states I ; X we define (K, ψ, o) ∼ (K′, ψ′, o′) if they are observa-
tionally equivalent as inference problems, that is either

(i) o � ψK and o′ � ψ′K′ and ψ|K(o) = ψ′|K′(o′).

(ii) o 6� ψK and o′ 6� ψ′K′

That is, both conditioning problems either fail, or both succeed with equal posterior.

Figure 6 reformulates Example 18.8 as an equivalence in Obs(Gauss).

−

0

∼

N (1) N (1) N (0.5)

Figure 6: Example 18.8 describes observationally equivalent states 0 ; 2

We now give a general recipe to extend an equivalence relation on states to a congruence
on arbitrary morphisms f : X → Y.

Definition 19.3 Let X be a symmetric premonoidal category. An equivalence relation ∼ on
states X(I,−) is called functorial if ψ ∼ ψ′ implies f ψ ∼ f ψ′. We can extend such a relation
to a congruence ≈ on all morphisms X → Y via

f ≈ g⇔ ∀A, ψ : I → A⊗ X, (idA ⊗ f)ψ ∼ (idA ⊗ g)ψ.

The quotient category X/≈ is symmetric premonoidal.

We show now that under good assumptions, the quotient by conditioning (Definition 19.2)
on X = Obs(C) is functorial, and induces a quotient category Cond(C). The technical condi-
tion is that supports interact well with dataflow

Definition 19.4 A Markov category C has precise supports if the following are equivalent for
all deterministic x : I → X, y : I → Y, and arbitrary f : X → Y and µ : I → X.

(i) x⊗ y� 〈idX, f 〉µ

129

(ii) x � µ and y� f x

Caveat: Precise supports refers to the relation x � µ according to Convention 8.9, and does
not presuppose the existence of representable supports (Section 8.3). The category BorelStoch

does not have representable supports, but still satisfies Definition 19.4.

Proposition 19.5 Gauss, FinStoch and BorelStoch have precise supports.

PROOF For Gauss, this follows from the characterization of � in Proposition 18.5. Let µ

have support S and f (x) = Ax +N (b, Σ). Let T be the support of N (b, Σ). The support of
〈id, f 〉µ is the image space {(x, Ax + c) : x ∈ S, c ∈ T}. Hence (x, y)� 〈id, f 〉µ iff x � µ and
y� f x.

For FinStoch, an outcome (x, y) has positive probability under 〈id, f 〉µ iff x has positive
probability under µ, and y has positive probability under f (−|x).

For BorelStoch, the measure ψ = 〈id, f 〉µ is given by

ψ(A× B) =
∫

x∈A
f (B|x)µ(dx)

Hence ψ({(x0, y0)}) = f ({y0}|x)µ({x}), which is positive exactly if µ({x0}) > 0 and
f ({y0}|x) > 0. �

Theorem 19.6 Let C be a Markov category that has conditionals and precise supports. Then ∼ is a
functorial equivalence relation on Obs(C).

PROOF Let (K, ψ, o) ∼ (K′, ψ′, o′) : I ; X be equivalent states and (H, f , v) : X ; Y be any
morphism. We need to show that the composites

(H ⊗ K, (f ⊗ idK)ψ, v⊗ o) ∼ (H ⊗ K′, (f ⊗ idK′)ψ
′, v⊗ o′) (66)

are equivalent. We analyze different cases.

The states fail If a state (K, ψ, o) fails because o 6� ψK, then any composite must fail too,
because we can apply Proposition 9.11 to the marginalization map recovering o. So both
sides of (66) fail and are thus equivalent. Note that the causality assumption is automatic in
this chapter, because C is assumed to have conditionals (Proposition 9.13).

The composite fails Assume from now that the states succeed and thus also have equal
posteriors

ψ|K(o) = ψ′|K(o′) (67)

We first show that the success conditions on both sides of (66) are the same, so if the LHS
fails so does the RHS. The “precise supports” axiom lets us split the success condition into
two statements; that is the following are equivalent (and analogous for ψ′, o′):

(i) v⊗ o � (fH ⊗ idK)ψ

(ii) o � ψK and v� fHψ|K(o)
To see this, we instantiate Definition 19.4 with the morphisms µ = ψK and g = fH ◦ ψ|K,
because the definition of the conditional ψ|K lets us recover

〈g, idK〉µ = (fH ⊗ idK)ψ.

It is clear that condition (ii) agrees for both sides of (66). Hence so does (i).

130

The composite succeeds We are left with the case that both sides of (66) succeed, and need
to show that the composite posteriors agree

[(f ⊗ idK)ψ]|H⊗K(v⊗ o) = [(f ⊗ idK′)ψ
′]|H⊗K′(v⊗ o′) (68)

We use a variant of the argument from [Fritz, 2020, 11.11] that double conditionals can be
replaced by iterated conditionals. Consider the parameterized conditional

β
def
= (f ◦ ψ|K)|H : H ⊗ K → Y

with universal property

ψ|K

f

K

Y H

=

K

ψ|K

f

β

Y H

(69)

Some string diagram manipulation shows that β too has the universal property of the double
conditional

β = [(f ⊗ idK)ψ]|H⊗K

131

We check

ψ

f

β

Y H K

=

ψ

f

β

Y H K

ψ|K
=

ψ

f

β

Y H K

ψ|K

which further reduces using (69) to the desired

ψ

f

Y H K

ψ|K

=

ψ

f

Y H K

By specialization (Proposition 8.14), we can fix one observation o in β to obtain a conditional

β(idH ⊗ o) = (f ◦ ψ|K(o))|H (70)

132

But this conditional agrees with (f ◦ ψ′|K(o′))|H by assumption (67). Hence we can evaluate
the joint posterior successively,

[(f ⊗ idK)ψ]|H⊗K(v⊗ o) = β(idH ⊗ o) ◦ v
(70)
= (f ◦ ψ|K(o))|H ◦ v

(67)
= (f ◦ ψ′|K′(o′))|H ◦ v

symmetric
= [(f ⊗ idK′)ψ

′]|H⊗K′(v⊗ o)

establishing (68). �

We can spell out the equivalence ≈ as follows:

Proposition 19.7 We have (K, f , o) ≈ (K′, f ′, o′) : X ; Y if and only if for all ψ : I → A⊗ X,
either

(i) o� fKψX and o′ � f ′K′ψ
′
X and [(idA ⊗ f)ψ]|K(o) = [(idA ⊗ f ′)ψ′]|K′(o′)

(ii) o 6� fKψX and o′ 6� f ′K′ψ
′
X

Furthermore, because C has conditionals, it is sufficient to check these conditions for A = X and ψ

of the form copyX ◦ φ.

The universal property of the conditional in question is

ψ

f =

ψ

f

A Y K

A Y K

We can show that isomorphic conditions are equivalent under the relation ≈.

Proposition 19.8 (Isomorphic conditions) Let (K, f , o) : X ; Y and α : K ∼= K′ be an isomor-
phism. Then

(K, f , o) ≈ (K′, (idY ⊗ α) f , αo).

In programming terms (k:= o) ≈ (αk:= αo).

PROOF Let ψ : I → A ⊗ X. We first notice that o � ψK if and only if αo � αψK, so the
success conditions coincide. It is now straightforward to check the universal property

(idA ⊗ f)ψ|K = (idA ⊗ ((idX ⊗ α) f))ψ|K′ ◦ α.

This requires the fact that isomorphisms are deterministic (Proposition 9.9). The proof works
more generally if α is deterministic and split monic. �

133

We can now give the Cond construction:

Definition 19.9 Let C be a Markov category that has conditionals and precise supports. We
define Cond(C) as the quotient

Cond(C) = Obs(C)/≈

This quotient is a CD category, and the functor J : C→ Cond(C) preserves CD structure.

PROOF We have checked functoriality of ∼ in Theorem 19.6, so by Definition 19.3, the quo-
tient is symmetric premonoidal. It remains to show that the interchange laws holds, i.e.
observations can be reordered. But this follows from Proposition 19.8 because swapping is
an isomorphism. �

Proposition 19.10 By virtue of being a well-defined CD category, the commutativity equation hold
in the internal language of Cond(C).

We have two diagrammatic languages at our disposal. One is string diagrams in the
Markov category C with blue condition wires around. The other one takes place in the CD
category Cond(C), where conditions are present as actual effects. We will tacitly invoke J to
lift diagrams in C to (conditioning-free) diagrams in Cond(C).

f

oY

X

f

o
Y

X

Figure 7: Two diagrammatic representations of an open conditioning program. On the left
using conditioning wires, on the right using the conditioning effects in Cond(C)

Example 19.11 Proposition 19.8 states diagrammatically that for all isomorphisms α and ob-
servations o, we have

o

α

αo

=

19.3 Laws for Conditioning

We derive some properties of Cond(C). We firstly notice that J is faithful for common Markov
categories.

134

Proposition 19.12 Morphisms f , g : X → Y are equated via J(f) ≈ J(g) if and only if

∀ψ : I → A⊗ X, (idA ⊗ f)ψ = (idA ⊗ g)ψ (71)

In particular, J is faithful for Gauss, FinStoch and BorelStoch.

PROOF Directly from the definition of ≈. �

Note that equation (71) is stronger than equality on points: If J(f) ≈ J(g) then f and g are
almost surely equal with respect to all distributions. In particular f x = gx for all x : I → X.
This means J is faithful in all Markov categories C where I is a separator.

We can classify the states in Cond(C), which correspond precisely to inference problems.
Any such problem either fails or computes a well-defined posterior.

Proposition 19.13 (States in Cond) The states I ; X in Cond(C) are of the following form:

(i) There is a unique failure state ⊥X : I ; X given by any (K, ψ, o) with o 6� ψK.17

(ii) Any other state is equal to a conditioning-free posterior, namely (K, ψ, o) ≈ J(ψ|K ◦ o). That
is diagrammatically

ψ

o

ψ|Ko

=

X

K

X

if o � ψK, and

⊥X

X

otherwise

(iii) Failure is “strict” in the sense that any composite or tensor with ⊥ gives ⊥.

(iv) The only scalars I ; I are idI and ⊥I . Both are copyable, but ⊥I is not discardable.

PROOF By definition of ∼. �

Corollary 19.14 If o � ψ then (ψ:= o) ≈ idI succeeds without any effect; in particular, because
o � o, we can eliminate tautological conditions

=
o

o

(empty diagram)

The most important law states that after we enforce a condition, it will hold with exact-
ness. In programming terms, this is the substitution principle (59). Categorically, we are
asking how the conditioning effect interacts with copying:

17it is a minor extra assumption that there exists a non-instance o 6� µ in C; this should be the case in any
Markov category of practical interest

135

Proposition 19.15 (Enforcing conditions) We have

(X, copyX, o) ≈ (X, o⊗ idX, o)

In programming notation
(x:= o); x ≈ (x:= o); o

and expressed in Cond(C)

o

=

K
o

K

o

(72)

Note that the conditioning effect cannot be eliminated; however after the condition takes
place, the other wire can be assumed to contain o.

PROOF Let ψ : I → A⊗ X; the success condition reads o � ψX both cases. Now let o �
ψX and let ψ|X be a conditional distribution for ψ. The following maps give the required
conditionals

[(idA ⊗ copyX)ψ]|X = 〈ψ|X, idX〉 [(idA ⊗ o⊗ idX)ψ]|X = ψ|X ⊗ o

as evidenced by the following string diagrams

ψ

ψ|X o

ψ

o
=

A X
ψ

ψ|X

ψ

ψ|X

ψ

= =

A X

and

Composing with o, we obtain the desired equal posteriors

〈ψ|X, idX〉o = ψ|X(o)⊗ o = (ψ|X ⊗ o)(o)

from determinism of o. �

Corollary 19.16 (Initialization) Conditioning a fresh variable on a feasible observation makes it
assume that observation. Formally, if o � ψ then

(let x = ψ in (x:= o); x) ≈ o

136

PROOF Combining Proposition 19.15 and Corollary 19.14, we have

o

=

ψ

o

o

ψ

=

o

�

Corollary 19.17 (Idempotence) Conditioning is idempotent, that is

(x:= o); (x:= o) ≈ (x:= o)

In other words, the conditioning effect is copyable (but not discardable).

PROOF Again by Proposition 19.15 and Corollary 19.14 we obtain

o

= =

o o

o

=

o

o

o

o

�

We note that this does not imply that every effect in Cond(C) is copyable, e.g. observe
statements are are not (Section 20.1).

Proposition 19.18 (Aggregation) Conditions can be aggregated

o′

=

o

K K′

o⊗ o′

K⊗ K′

PROOF By definition of the monoidal structure of Obs. �

We demonstrate the power of our conditioning laws by showing that conditioning be-
haves as expected for observed variables in a statistical model.

137

Example 19.19 Let ψ : I → X⊗W ⊗Y display the conditional independence X⊥Y |W, then
once W:= w is observed, X and Y become independent.

PROOF The conditioned distribution is given by the Cond(C)-state

w

ψ

X

W

Y

(73)

By the assumption of conditional independence, we can find maps factorizing ψ as follows

φ

f g=ψ

XWY WX Y

We are now able to derive that (73) decomposes as the product of its marginals:

w

ψ

X

w

ψ

Y

=

φ

f w

φ

gw

X Y

=

φ

f w

φ

gw

X Y

w w

=

φ

f

w

g

X Y

w =

φ

f

w

g

X Y

= w

ψ

X Y

where we repeatedly apply Proposition 19.15, idempotence of scalars and determinism of
w. �

138

Case study: Finite probability The Cond construction allows us to work with conditioning
channels in any well-behaved setting. We conclude with an important consistency check,
namely that the Cond construction reduces to a well-known concept for finite probability:

A subprobability distribution on a set X is a formal linear combination ∑i pi[xi] with pi ∈
[0, 1] and ∑i pi ≤ 1. Similarly a subprobability kernel X ; Y (or substochastic matrix) is a ker-
nel p(y|x) such that ∀x, ∑y p(y|x) ≤ 1. Subprobability kernels form a CD category that is a
natural domain for probabilistic computation with scoring (of scores ≤ 1). We’ll now show
Cond(FinStoch) essentially consists of subprobability kernels plus automatic normalization.

A conditioning channel Q : X ; Y is presented by a finite set Z, a probability kernel
q(y, z|x) and an observation z0 ∈ Z. We associate to Q the subprobability kernel ρQ : X → Y
given by the likelihood

ρQ(y|x) = q(y, z0|x)
Conversely, we can associate to every subprobability kernel ρ : X → Y a conditioning chan-
nel Qρ with two possible observations b ∈ {0, 1} corresponding to ρ(y|x) and its comple-
mentary probability, i.e.

qρ(y, b|x) = b · ρ(y|x) + (1− b) · (1− ρ(y|x)).

Every conditioning channel Q can be recovered from the subprobability kernel ρQ in this
way: Given any distribution p(a, x), the relevant posterior in Proposition 19.7 is given by

∑x p(a, x)q(y, z0|x)
∑a,x,y p(a, x)q(y, z0|x)

where the denominator is nonzero iff the support condition is satisfied. We can see that
using qρ computes the same expression as q, because

∑
x

p(a, x)qρ(y, 1|x) = ∑
x

p(a, x) · ρ(y|x) = ∑
x

p(a, x)q(y, z0|x).

However Cond(FinStoch) is not quite equivalent to the category of subprobability kernels,
because subprobability computation needs not be normalized, while the Cond-construction
takes care of normalization automatically. Formally, two subprobability kernels ρ, ρ′ : X → Y
may give rise to the same conditioning channel. By the characterization in Proposition 19.7,
they do if and only if for all distributions p(x) we have

∀x∀y,
p(x)ρ(y|x)

∑x,y p(x)ρ(y|x) =
p(x)ρ′(y|x)

∑x,y p(x)ρ′(y|x)

Choosing p to be a uniform distribution, we obtain

∀x∀y,
ρ(y|x)

∑x,y ρ(y|x) =
ρ′(y|x)

∑x,y ρ′(y|x)

Either both support conditions fail, that is ρ = ρ′ = 0, or both denominators are positive
numbers. In either case, ρ, ρ′ are proportional to each other, i.e. there exists a nonzero con-
stant λ such that ρ(y|x) = λρ′(y|x). Up to the constant λ, it doesn’t matter that the kernels
are substochastic, because any nonnegative kernel can be rescaled; we arrive at the following
characterization:

139

Proposition 19.20 Cond(FinStoch) is equivalent to the CD category of projectivized nonnega-
tive matrices, that is

(i) objects are finite sets X

(ii) morphisms X → Y are equivalence classes [A] of nonnegative matrices A ∈ [0, ∞)Y×X where
[A] = [B] iff A = λB for some λ 6= 0.

The idea of considering distributions up to a constant is not novel, see for example [Gromov,
2014]. We illustrate a concrete instance of Proposition 19.13:

Example 19.21 A projectivized subprobability kernel p : X → Y is discardable if and only if
there exists a constant λ 6= 0 such that

∀x, ∑
y

p(y|x) = λ

In particular, the states 1 → X are either a normalizable distribution p ∈ FinStoch(1, X) or
the failure kernel ⊥X = 0.

20 Conditioning on Equality

Cond gives a canonical solution to the problem of conditioning variables on constant ob-
servations (x:= o). In some cases such as the Gaussian language, we want to do more and
condition arbitrary expressions on equality with each other (s =:= t). For the Gaussian case,
there is an obvious way to reduce this to the previous case by setting the difference s − t
equal to zero. This is already a morphism (=:=) : 2 ; 0 in Cond(Gauss), written

(x =:= y) def
= (x− y:= 0)

Similarly in finite probability, we can explain x =:= y by setting their boolean equality test to
true,

(x =:= y) def
= ([x = y]:= true)

Unlike the Cond construction, which is completely canonical, it seems to us that the way of
reducing binary conditioning to a constant observation requires an additional choice. After
all, explaining x =:= y by x/y =:= 1 famously leads to different results (Example 17.2).

In any case, a choice of binary conditioning effect gives rise additional rich structure
on Cond(C) which we’ll sketch now, using Gaussian probability as an example: First, we
introduce another operation ε : 1⊗ 1 ; 1 by setting two wires equal and returning either
output.

0

def
=

−=:=
=

140

We chose to return a copy of the left input wire, but this does not matter because (=:=) is
symmetric (by Proposition 19.8). We can now show the following:

Proposition 20.1 The conditioning operation has the structure of a commutative special Frobenius
semigroup. That is
Associativity, Symmetry

= =

Frobenius Law + Specialness condition

= = =

Furthermore we have the following identities where o is any deterministic observation.

= =:=

o

=
o

(74)

PROOF Symmetry is immediate because (=:=) is symmetric and (74) follow from the comonoid
laws and Proposition 19.8. The left equation of the Frobenius law holds by construction
while the right equation requires some thought: The idea is that we can write x = (x− y)+ y
and apply Proposition 19.15 to the condition (x− y):= 0 to obtain x = y. In string diagrams
(where we’ve added variables to keep track of the arithmetic)

0

−
= =

0

−=

+

00

−

0

+

−

0

−=

x y

xx x− y

x x− y x

141

From the Frobenius law, we can easily derive the associativity axiom

=:=
=:=

= = =

The special law amounts to removing the tautological condition 0:= 0 (Corollary 19.14)

=

0

−

=

0

0

�

The proofs can be adapted to Cond(FinStoch) by using if-then-else in place of addition and
subtraction. The Frobenius structure on each object X is given by the subprobability kernel
εX : X× X ; X defined as

εX(z|x, y) = [x = y = z] (75)

In Cond(Gauss), we can similarly extend ε to every object by conditioning componentwise.

Frobenius algebras feature prominently in the analysis of classical information flow in
quantum computation [Heunen and Vicary, 2019] and have been linked to Bayesian infer-
ence before [Coecke and Spekkens, 2012]. Our analysis of conditioning in Markov categories
recovers this structure from first principles and produces a novel class of examples such as
Cond(Gauss). Frobenius algebras also appear as equality tests in categories of relations [Baez
and Erbele, 2015; Baez et al., 2018] and unification in logic programming (Section 20.2). We
conjecture that the Frobenius structures in probability simplify to these examples under the
possibilistic collapse (Proposition 5.4).

20.1 Scoring

We now have a formal framework to talk about soft conditions, i.e. score statements. A
synthetic soft condition is any morphism of the form

ψ
(76)

142

that is we condition on equality with an independent variable. In programs, this amounts to
writing x =:= ψ(). By associativity, soft conditions combine as follows

ψ

φ

φ ψ

=
(77)

Soft conditions are the synthetic analogues of scoring. In Cond(FinStoch), they are given by
actual scoring: Given a subprobability distribution ψ(x), the morphism ρ : X → X defined
by (76) is given by multiplication with ψ(x), i.e.

ρ(y|x) = ψ(x)[y = x]

One can also show that every effect X → 1 in Cond(FinStoch) is actually scoring with a
unique subdistribution 1 → X (this is an automatic consequence of the duality in Sec-
tion 20.2).

In this way, soft conditions generalize working with likelihoods and densities. If a dis-
tribution is already presented by a density then the associativity formula (77) means these
densities can be multiplied. However we notice that the Cond-construction generalizes to
categories like Gauss which have no explicit representations of densities. We purely work
with the structure of the underlying Markov category and don’t presuppose a surround-
ing CD category like SfKer. This is reminiscent of the treatment of likelihoods and ‘channels
represented by an effect’ in [Cho and Jacobs, 2019] and more recently [St Clere Smithe, 2020].

20.2 Aside on Uninformative Priors and Frobenius Units

If there is not enough symmetry and one can not
postulate equiprobability (and/or something of this
kind such as independence) of certain "events", then
the advance of the classical calculus stalls [...]

MIKHAIL GROMOV, Six Lectures on Probability,
Symmetry, Linearity

An interesting point is that our binary condition operation is almost a Frobenius algebra,
except there need not be a unit for conditioning which satisfies

=

143

According to the reading of soft conditions, observing from the unit doesn’t update the prior
and thus introduces no new information. Conversely, starting from a unit prior, we will im-
mediately accept new information without bias. In this way, the unit forms an ideal uniform
distribution or a unbiased prior.

Because conditioning on the unit always succeeds, its support must be the whole space.
One can show that in Cond(FinStoch), the unit on X is given by the uniform distribution

u(x) =
1
|X|

In Cond(Gauss), there is no unit: Every Gaussian distribution has a possibly slight bias to-
wards its mean, and scoring it with a sufficiently flat Gaussian will recover that mean in the
limit. There is no uniform probability distribution on R.

In statistics, the Lebesgue measure is sometimes employed as an improper prior even
though it is unnormalized. This problem disappears in the calculation as soon as we condi-
tion on another distribution. A more formally appealing approach to improper priors would
be to find an extension of say Gauss by limits to add “formal uniform distributions”, which
then act as units in the Cond construction. An interesting example of such a synthetic uni-
form prior is given by the allocation of a fresh logic variable in unification [Staton, 2013a].
Here, the type of terms has a Frobenius algebra structure given by unification

ε : term× term→ term

ε(u, v) = (u =:= v); u

and the following equation, which is derivable from the axioms in Staton’s paper, states that
∃ is a unit for this structure

b | ϕ : 1 ` ∃a.(a =:= b)ϕ[a] ≡ ϕ[b] (78)

The type isomorphisms from Section 3 of that paper

val iso : (α * term −> β) −> (α −> β * term)
le t iso f a = le t u = free() in (f(a,u),u)

val iso′ : (α −> β * term) −> (α * term −> β)

val iso′ g (a,u) = le t (b,v) = g(a) in u =:= v; b

translate to the well-known bending of wires for the self-duality (e.g. [Heunen and Vicary,

144

2019]) of term induced by its Frobenius structure

f

A term

f

A

termB B

7→
iso

g

A

termB

7→
iso′

g

A term

B

Perhaps surprisingly, that we cannot naively use the ability to bend wires in Cond to sym-
bolically express conditionals. For a distribution ψ : I → X⊗Y, the morphism

ψ

X

Y

is in general not a conditional ψ|Y as the defining equation (38) takes the form

ψ

ψ
=

ψψ

=

ψψ

which does not equal ψ unless ψY is uniform. However we can extract ψ|Y if ψY happens to
be invertible with respect to ε.

Explicit unification lets us revisit Fritz’s notation (31), which denotes morphisms f : A⊗
B → X ⊗ Y as f (x, y|a, b). Taking a page out of Prolog’s book, we can treat nonlinear use of
variables in output position using explicit unification: For example, given a binary predicate
p, the query p(X,X) can be understood as p(X,Y), X =:= Y. Similarly for a morphism p : A→
X⊗X, we can explain the expression p(x, x|a) using explicit conditioning as p(x, y|a), x =:= y
which is of course just εX ◦ p. Fresh variables are initialized using the unit, and private
variables are automatically discarded (marginalized). In fact, by making use of the Frobenius
induced duality, we need not distinguish between input and output wires at all.

We can thus conceive of a language which lets us phrase probabilistic queries in a Prolog-
like style (cf. [De Raedt and Kimming, 2015]). For example, let the predicate disease(D)

145

sample possible diseases Dwith their baseline frequencies in a population, and symptom(D,S)
produce the symptoms statistically associated with each disease. Then the compound query

disease(D), symptom(D, cough).

expresses a posterior over diseases D after observing a cough. Note that the nonlinear use of
the variable D triggers explicit conditioning. Spelled out fully, the computation to perform is

let d = disease() in

let (d′,s) = symptom() in

d′ =:= d; s =:= ’cough’;

return d

or concisely written using string diagrams

disease symptom cough

D D S

21 Equational Presentation of the Gaussian Language

We make use of Cond(Gauss) to give denotational semantics to our Gaussian language from
Section 17 and show this semantics is fully abstract (Theorem 21.2). The result of this section
is then dedicated to understanding Cond(Gauss) in more detail, by deriving an equational
presentation and normal forms.

21.1 Denotational Semantics

The Gaussian language embeds into the internal language of Cond(Gauss), where x =:= y is
translated as (x − y):= 0 as in Section 20. A term ~x : Rm ` e : Rn denotes a conditioning
channel JeK : m ; n.

Proposition 21.1 (Correctness) If (e, ψ) B (e′, ψ′) then JeKψ = Je′Kψ′. If (e, ψ) B ⊥ then
JeK = ⊥.

PROOF We can faithfully interpret ψ as a state in both Gauss and Cond(Gauss). If x ` e and
(e, ψ) B (e′, ψ′) then e′ has potentially allocated some fresh latent variables x′. We show that

let x = ψ in (x, JeK) = let (x, x′) = ψ′ in (x, Je′K). (79)

This notion is stable under reduction contexts.

146

Let C be a reduction context. Then

let x = ψ in (x, JC[e]K(x))

= let x = ψ in let y = JeK(x) in (x, JCK(x, y))

= let (x, x′) = ψ′ in let y = Je′K(x, x′) in (x, JCK(x, y))

= let (x, x′) = ψ′ in (x, JC[e′]K)

Now for the redexes

(i) The rules for let follow from the general axioms of value substitution in the internal
language

(ii) For normal() we have (normal(), ψ) B (x′, ψ⊗N (0, 1)) and verify

let x = ψ in (x, Jnormal()K)

= ψ⊗N (0, 1)

= let (x, x′) = ψ⊗N (0, 1) in (x, Jx′K)

(iii) For conditioning, we have (v =:= w, ψ) B ((), ψ|v=w). We need to show

let x = ψ in (x, Jv =:= wK) = let x = ψ|v=w in (x, ())

Let h = v−w, then we need to the following morphisms are equivalent in Cond(Gauss):

ψ|h=0
≈

ψ

h

0

Applying Proposition 19.13 to the left-hand side requires us to compute the conditional
〈id, h〉ψ|2 ◦ 0, which is exactly how ψ|h=0 is defined. �

Theorem 21.2 (Full abstraction) Je1K = Je2K if and only if e1 ≈ e2 (where ≈ is contextual equiv-
alence, Definition 17.5).

PROOF For⇒, let K[−] be a closed context. Because J−K is compositional, we obtain JK[e1]K =
JK[e2]K. If both succeed, we have reductions (K[ei], !) B∗ (vi, ψi) and by correctness v1ψ1 =

JK[e1]K = JK[e2]K = v2ψ2 as desired. If JK[e1]K = JK[e2]K = ⊥ then both (K[ei], !) B∗ ⊥.
For⇐, we note that Cond quotients by contextual equivalence, but all Gaussian contexts

are definable in the language. �

147

21.2 Equational Theory

We now give an explicit presentation of the equality between programs in the Gaussian lan-
guage in the style of Section 11.1. We demonstrate the strength of the axioms by using them
to characterize normal forms for various fragments of the language (Section 21.3). Besides
an axiomatization of program equality, this can also be regarded in other equivalent ways,
such as a presentation of a PROP by generators and relations [Staton et al., 2017a], or as a
presentation of a strong monad by algebraic effects, or as a presentation of a Freyd category
(Section 3.7). But we approach from the programming language perspective.

Similarly to the shorthand for Beta-Bernoulli (Section 10.2), we transform the Gaussian
language into an algebraic form that fits the framework of second-order algebra (Section 3.7).
The reader may find it helpful to think of this as a normal form for the language modulo
associativity of ‘let’. We begin by considering a fragment of the language with the following
modifications: only variables of type R are allowed in the typing context Γ; we have an
explicit command for failure (⊥); we separate the typing judgement in two: judgements for
expressions of affine algebra à and for general computational expressions c̀; we have an
explicit coercion ‘return’ between them for clarity.

Γ, x : R, Γ′ à x : R
Γ à s : R Γ à t : R

Γ à s + t : R
Γ à t : R

Γ à α · t : R

Γ à β : R
Γ, x : R ` t : Rn

Γ c̀ let x = normal() in t : Rn

Γ à s : R Γ à t : R Γ c̀ u : Rn

Γ c̀ (s =:= t); u : Rn

Γ à t1 : R . . . Γ à tn : R
Γ c̀ return(t1, . . . , tn) : Rn Γ c̀ ⊥ : Rn

There is no general sequencing construct, but we can combine expressions using the
following substitution constructions, whose well-typedness is derivable.

Γ, x : R, Γ′ c̀ t : Rn Γ, Γ′ à s : R
Γ, Γ′ c̀ t[s/x] : Rn

Γ c̀ t : Rm Γ, x1, . . . , xm : R c̀ u : Rn

Γ c̀ t[x1, . . . , xn.u/return] : Rn

In the second form we replace the return statement of an expression with another expres-
sion, capturing variables appropriately. The precise definition of this hereditary substitution
is standard in logical frameworks (e.g. [Adams, 2009], [Staton, 2013a]), for example:(

let x = normal() in return(x + 3)
)
[(a.a =:= 4; return(a))/return]

= let x = normal() in (x + 3) =:= 4; return(x + 3)

For brevity, we introduce shorthands νx.t for let x = normal() in t, r for return and drop
‘;’ when unambiguous. Now the syntax matches the formalism of a second-order algebraic
theory (Section 3.7) of the signature

ν : (0 | 1) ⊥ : (0 | −) (=:=) : (2 | 0)

148

Note that r is really the name of a unique suitably typed metavariable. Because the signa-
ture has no operation taking more than one computation, no more than one metavariable is
necessary.

The theory is parameterized over an underlying theory of values, which is affine algebra:
The type R has the structure of a pointed vector space, which obeys the usual axioms of vector
spaces plus constant symbols (β)β∈R subject to

α · β = αβ, α + β = α + β

Terms modulo equations are affine functions. The category theorist will recognize the cate-
gory Aff = Gaussdet as the Lawvere theory of pointed vector spaces.

We axiomatize equality by closing the following axioms under the two forms of substitu-
tion and also congruence. The following axioms characterize the conditioning-free fragment
of the language, that is, Gaussian probability

c̀ νx.r[] ≡ r[] : R0 (DISC)

c̀ ν~x.r[U~x] ≡ ν~x.r[~x] : Rn if U orthogonal (ORTH)

The following are commutativity axioms for conditioning

a, b, c, d c̀ (a =:= b)(c =:= d)r[] ≡ (c =:= d)(a =:= b)r[] : R0 (C1)

a, b c̀ (a =:= b); νx.r[x] ≡ νx.(a =:= b)r[x] : R1 (C2)

a, b c̀ (a =:= b)⊥ ≡ ⊥ : Rn (C3)

while the following encode specific properties of (=:=)

a c̀ (a =:= a)r[] ≡ r[] : R0 (TAUT)

c̀ (0 =:= 1)r[] ≡ ⊥ : R0 (FAIL)

a, b c̀ (a =:= b)r[a] ≡ (a =:= b)r[b] : R1 (SUBS)

c̀ νx.(x =:= c)r[x] ≡ r[c] : R1 (INIT)

Lastly, we add the special congruence scheme

Γ c̀ (s =:= t)r[] ≡ (s′ =:= t′)r[] : R0 (CONG)

whenever (s = t) and (s′ = t′) are interderivable equations over Γ in the theory of pointed
vector spaces.

Axioms (DISC) and (ORTH) completely axiomatize the fragment of the language without
conditioning (Proposition 21.3). Axioms (C1)-(C3) describe dataflow – all the operations
distribute over each other. The reader should focus on the remaining five axioms (TAUT)-
(CONG), which are specific to conditioning.

21.3 Normal forms

Proposition 21.3 Axioms (DISC)-(ORTH) are complete for Gauss. That is, conditioning-free terms
~x : Rn ` u, v : Rn denote the same morphism in Gauss if and only if ~x ` u ≡ v is derivable from the
axioms.

149

PROOF The axioms are clearly validated in Gauss; probability is discardable and indepen-
dent standard normal Gaussians are invariant under orthogonal transformations. Note that
ν commutes with itself because permutation matrices are orthogonal.

It is curious that these laws completely characterize Gaussians: Any term normalizes
to the form ν~z.r[A~x + B~z +~c], denoting the map (A,~c, BBT) in Gauss. Consider some other
term ν~w.ϕ[A′~x + B′~w +~c′] that has the same denotation. By (DISC), we can without loss
of generality assume that ~z and ~w have the same dimension. The condition (A, c, BBT) =

(A′, c′, B′(B′)T) implies A = A′,~c = ~c′. By Proposition 33.5 there is an orthogonal matrix U
such that B′ = BU. So the two terms are equated under (ORTH). �

Example 21.4

νx.νy.r[x + y] ≡ νy.r[
√

2 · y]

PROOF Let s = 1/
√

2, then the matrix U =

(
s s
−s s

)
is orthogonal. Thus

νx.νy.r[x + y] ≡ νx.νy.r[(sx + sy) + (−sx + sy)]

≡ νx.νy.r[
√

2y]

≡ νy.r[
√

2y]

where we apply (ORTH), affine algebra and (DISC). �

We proceed to showing the consistency of the axioms for conditioning.

Proposition 21.5 Axioms (DISC)-(CONG) are valid in Cond(Gauss)

PROOF Sketch. The commutation properties are straightforward from string diagram ma-
nipulation.

(SUBS) Write a = b + (a − b); by Proposition 19.15, once we condition a − b:= 0, we have
a = b.

(INIT) By Proposition 19.13, noting that c� N (0, 1)

(FAIL) By Proposition 19.13, because 0 6� 1

(CONG) This follows from Proposition 19.8, because over Aff, equivalent scalar equations
are nonzero multiples of each other. Still, this is very surprising axiom scheme, which
is substantially generalized in Corollary 21.7. �

For the remainder of this section, we will show how to use the theory to derive normal
forms for conditioning programs.

Proposition 21.6 Elementary row operations are valid on systems of conditions. In particular, if S
is an invertible matrix then

(A~x =:=~b)r[] ≡ (SA~x =:= S~b)r[]

150

PROOF Reordering and scaling of equations is (C1), (CONG). For summation, i.e.

(s =:= t)(u =:= v)r[] ≡ (s =:= t)(u + s =:= v + t)r[]

instantiate (SUBS) with (u + x =:= v + t)r[]/r[x]. Now use the fact that applying any invert-
ible matrix on the left can be decomposed into elementary row operations. �

Corollary 21.7 If A~x = ~c and B~x = ~d are linear systems of equations with the same solution space,
then

(A~x =:= ~c)r[] ≡ (B~x =:= ~d)r[]

is derivable.

This generalizes (CONG) to systems of conditions.

PROOF If consistent systems are equivalent, then they must be isomorphic by Corollary 33.3
and we use the previous proposition. If they are inconsistent, we can derive (0 =:= 1) and use
(FAIL),(C3) to equate them to ⊥. �

We give a normal form for closed terms.

Theorem 21.8 Any closed term can be brought into the form ν~z.r[A~z +~c] or ⊥. The matrix AAT

is uniquely determined.

This is the algebraic analogue of Proposition 19.13.

PROOF By commutativity, we bring the term into the form

ν~z.(A~z =:=~b)r[D~z + ~d]

By Proposition 33.1, we can find invertible matrices S, T such that

SAT−1 =

(
Ir 0
0 0

)
and T is orthogonal. Using the orthogonal coordinate change ~w = T~z and Corollary 21.7,
the equations take the form

ν~w.(SAT−1~w =:= S~b)r[DT−1~w + ~d]

This simplifies to

ν~w.(~w1:r =:= ~c1:r)(0 =:= ~cr+1:n)r[DT−1~w + ~d]

where ~c = S~b. We can process the first block of conditions with (INIT). The conditions
(0 =:= ci) can either be discarded by (TAUT) if ci = 0 for all i = r + 1, . . . , n, or fail by (FAIL)
otherwise. We arrive at a conditioning-free term. �

Example 21.9

νx.νy.(x =:= y)r[x, y] ≡ νx.r[sx, sx]

where s = 1/
√

2.

151

PROOF We use again the unitary matrix U from Example 21.4

νx.νy.(x =:= y); r[x, y] ≡ νx.νy.(sx + sy =:= −sx + sy);

r[sx + sy,−sx + sy]

≡ νx.νy.(x =:= 0)r[sx + sy,−sx + sy]

≡ νy.r[sy, sy]

where we apply (ORTH), affine algebra and (INIT). �

Lastly, we give a normal form for conditioning effects: Every effect in Cond(Gauss) can
be expressed as A~x =:= ψ, that is a suitable transformation followed by a soft constraint
(Section 20.1). However, unlike in a situation where there exists a Frobenius unit, not every
effect is of the form ~x =:= ψ (for example x1 − x2 =:= 0 is not of that form).

Theorem 21.10 (Normal forms) Every term ~x : Rn ` u : R0 can either be brought into the form
⊥ or

ν~z.A~x =:= B~z +~c (80)

where A ∈ Rr×n is in reduced echelon form with no zero rows. The values of A, ~c and BBT are
uniquely determined.

PROOF Through the commutativity axioms, we can bring u into the form ν~z.A~x =:= B~z +~c
for some general A. Find an invertible matrix S that turns A into reduced row echelon form,
and apply it to the condition via Proposition 21.6. The zero columns don’t involve ~x, so we
use Theorem 21.8 to evaluate the condition involving~z separately. We either obtain ⊥ or the
desired form (80). For uniqueness, we consider the term’s denotation (A~x =:= η) : n ; 0 in
Cond(Gauss), where η = N (~c, BBT). We must show that A and η can be reconstructed from
the observational behavior of the denotation. The proof is given in the appendix (Proposi-
tion 33.8). �

22 Context, Related Work and Outlook

22.1 Symbolic Disintegration and Paradoxes

Our line of work can be regarded as a synthetic and axiomatic counterpart of the symbolic
disintegration of Shan and Ramsey [2017]. (See also [Gehr et al., 2016; Murray et al., 2018;
Narayanan and Shan, 2019; Walia et al., 2019]) That work provides in particular verified
program transformations to convert an arbitrary probabilistic program of type R⊗ τ to an
equivalent one that is of the form

let x = lebesgue() in let y = M in (x, y)

Now the exact conditioning x:= o can be carried out by substituting o for x in M. We empha-
size the similarity to our treatment of inference problems in Section 18, as well as the role that
coordinate transformations play in both our work (Section 21) and [Shan and Ramsey, 2017].

152

One language novelty in our work is that exact conditioning is a first-class construct, as op-
posed to a whole-program transformation, in our language, which makes the consistency of
exact conditioning more apparent.

Consistency is a fundamental concern for exact conditioning. Borel’s paradox (Exam-
ple 17.2) is an example of an inconsistency that arises if one is careless with exact condi-
tioning ([Jaynes, 2003, Ch. 15], [Jacobs, 2021b, §3.3]): It arises when naively substituting
equivalent equations within (=:=). Recall that for example, the equation x − y = 0 is equiv-
alent to x/y = 1 over the (nonzero) real numbers. Yet, in a hypothetical extension of our
language which allows division, the following programs would not contextually equivalent:

x = normal(0,1)

y = normal(0,1)

x−y =:= 0
6≡
x = normal(0,1)

y = normal(0,1)

x/y =:= 1

In our work, Borel’s paradox finds a type-theoretic resolution: Conditioning is presented
abstractly as an algebraic effect, so the expressions (s =:= t) : I and (s == t) : bool have a dif-
ferent formal status and can no longer be confused. They must be related explicitly through
axioms like (SUBS), and special laws for simplifying conditions are given in (CONG) or
Corollary 21.7. By Proposition 19.8, we can always substitute conditions which are formally
isomorphic, but x− y =:= 0 and x/y =:= 1 are not isomorphic conditions in this sense. For the
special case of Gaussian probability, we proved that equivalent affine equations are auto-
matically isomorphic, making it very easy to avoid Borel’s paradox in this restricted setting
(Corollary 21.7). To include the non-example above, our language needs a nonlinear oper-
ation like (/). If beyond that we introduced equality testing to the language, difference be-
tween equations and conditions would become even more apparent. The equation x− y = 0
is obviously equivalent to the equation (x == y) = true, but the condition (x == y) =:= true
would cause the whole program to fail, since measure-theoretically, (x == y) is the same as
false.

This also suggests a tradeoff between expressivity of the language and well-behavedness
of conditioning. On this subject, Shan and Ramsey [2017] wrote:

The [measure-theoretic] definition of disintegration allows latitude that our disintegrator
does not take: When we disintegrate ξ = Λ ⊗ κ, the output κ is unique only almost
everywhere — κx may return an arbitrary measure at, for example, any finite set of x’s.
But our disintegrator never invents an arbitrary measure at any point. The mathematical
definition of disintegration is therefore a bit too loose to describe what our disintegrator
actually does. How to describe our disintegrator by a tighter class of “well-behaved dis-
integrations” is a question for future research. In particular, the notion of continuous
disintegrations [Ackerman et al., 2016b] is too tight, because depending on the input
term, our disintegrator does not always return a continuous disintegration, even if one
exists.

By our definitions, we have tackled this research problem: a notion of “well-behaved disin-
tegrations” is given by a Markov category with precise supports. The more comprehensive
category BorelStoch admits conditioning only on events of positive probability. The smaller

153

category Gauss however features a better notion of support and an interesting theory of con-
ditioning. Studying Markov categories of different degrees of specialization helps navigat-
ing the tradeoff. Once in the synthetic setting of a Markov category C with precise supports,
the program transformations of Shan and Ramsey [2017] are all valid in Cond(C), and the
Markov conditioning property (Definition 8.13) exactly matches the correctness criterion for
symbolic disintegration.

22.2 Other Directions

Once a foundation is in algebraic or categorical form, it is easy to make connections to
and draw inspiration from a variety of other work: The Obs construction (Definition 19.1)
that we considered here is reminiscent of lenses [Clarke et al., 2020] and the Oles construc-
tion [Hermida and Tennent, 2012]. These have recently been applied to probability the-
ory [St Clere Smithe, 2020], quantum theory [Huot and Staton, 2018] and reversible comput-
ing [Heunen and Kaarsgaard, 2021]. The details and intuitions are different, but a deeper
connection or generalization may be profitable in the future.

We have explored algebraic presentations of probability theories and conjugate-prior re-
lationships in Chapter III. Furthermore, the concept of exact conditioning is reminiscent of
unification in Prolog-style logic programming. Our presentation in Section 21 is partly in-
spired by the algebraic presentation of predicate logic of Staton [2013a], which has a similar
signature and axioms. The analogy has been explored in the form of Frobenius structures
given by conditioning and unification (Section 20) and their units (Section 20.2). Logic pro-
gramming is also closely related to relational programming, and we note that our presenta-
tion is reminiscent of presentations of categories of linear relations [Baez and Erbele, 2015;
Bonchi et al., 2017, 2019] and their string-diagrammatic presentation.

On the semantic side, we recall that presheaf categories have been used as a foundation
for logic programming [Kinoshita and Power, 1996]. Our axiomatization can be regarded as
the presentation of a generalized measure monad P on the category [Affop, Set], via [Staton,
2013a], where Aff is the category of finite dimensional affine spaces discussed in Section 21.

Probabilistic logic programming. PROBLOG [De Raedt and Kimming, 2015] supports both
logic variables as well as random variables within a common formalism. We have not con-
sidered logic variables in conjunction with the Gaussian language, but a challenge for future
work is to bring the ideas of exact conditioning closer to the ideas of unification, both practi-
cally and in terms of the semantics. We wonder if it is possible to extend Gauss by a synthetic
uniform prior which acts as a Frobenius unit (Section 20.2).

Implementation. The purpose of our Gaussian language was to give a minimalistic cal-
culus in which to study the novel effect of conditioning in isolation. The close fit of the
denotational semantics to the language was thus expected, and can be seen as an instance of
letting semantics inspire language design. To extend our calculus to a full-blown program-
ming language, one can make use of the general framework of algebraic effects to combine
conditioning with other effects like memory or recursion. For example, we can treat higher-
order functions by modelling the language on a presheaf category, which is cartesian closed.
The operational semantics easily extend to a full language, for which we have given imple-
mentations in Python and F# [Stein, 2021].

154

Chapter V

Name Generation and Probability on Function
Spaces

There are only two hard things in Computer Science:
cache invalidation and naming things.

— PHIL KARLTON

SUMMARY: We present fresh name generation as a synthetic probabilistic effect which
captures independence or perfect correlation. At higher-order types, names exhibit subtle
phenomena such as privacy and information-hiding which have a profound impact on the
dataflow properties of the theory and make name generation the canonical example of a
non-positive effect (see Section 9.1).

We then use quasi-Borel spaces to give a probabilistic model of fresh name generation as
random sampling. We show that this model is fully abstract up to first-order function types,
which is surprising for an ‘off-the-shelf’ model, and requires a novel analysis of probability
on function types. Our tools include descriptive set theory as well as syntactic methods such
as logical relations and normal forms. A more detailed overview over the results of this
chapter can be found in Section 23.1.

This chapter is based on joint work with Marcin Sabok, Sam Staton and Michael Wolman
[Sabok et al., 2021].

23 Introduction

Name generation is a ubiquitous phenomenon in computer science and one of the simplest
instances of generativity. A name is an abstract entity which has no properties other than
its identity, that is whether or not it is equal to other names. We can generate fresh names,
that is create a new name which is distinct from all other names. Examples of names are
GUIDs, database IDs or URLs, but also variable names in metaprogramming (gensym), locations
for memory allocation (new) and cluster names in statistics.

We study name generation using the ν-calculus [Pitts and Stark, 1993], which is a min-
imalistic call-by-value λ-calculus with a special construct νa.M which reads as “generate a
fresh name, bind it to a and continue with M”. For example, the program equation

νa.νb.(a = b) ≈ false

means that two fresh names are always distinct. Because the ν-calculus satisfies exchange-
ability and discardability equations, we can consider it a particularly minimalistic proba-
bilistic programming language, which can only express perfect correlation or independence.

In all the examples above, we can choose some number or string to represent the name,
but this information should be treated opaquely. One way of making this formal is that we

155

can always consistently rename, as long as we don’t introduce collisions between existing
names: This is what happens in capture-avoiding substitution, when for example the λ-term
(λx.λy.x) y reduces to λz.y where the bound variable y has been α-renamed to z. The renam-
ing approach is formalized in the category of nominal sets [Pitts, 2013b] which we’ll revisit
from a probabilistic viewpoint in Section 25. Nominal sets form the basis of the language
FRESH O’CAML [Shinwell and Pitts, 2005].

Name generation as randomness: Our goal is to give a genuinely probabilistic model of
name generation, where fresh name generation is random sampling. The idea is not far-
fetched, as some real-world implementations of gensym return a random string, which works
as intended if the probability of a collision is low enough. If we sample instead from a con-
tinuous distribution such as a Gaussian, the probability of a collision becomes zero. The
analogy between name generation and sampling has been recognized in statistics, for exam-
ple in random graph models or when gensym is used in place of a probability distribution in
cluster analysis (more under Section 30.1). By subsuming name generation under random
sampling, the two effects are unified in probabilistic programming.

We show that quasi-Borel spaces, a model for higher-order probabilistic programming,
soundly model the ν-calculus. It is crucial here that we use a model of higher-order proba-
bility, because measurable spaces cannot interpret λ-abstraction (Section 4.3).

A theory of random functions: The probabilistic reading of name generation leads to in-
teresting questions about the nature of probability on function spaces. For example, the
higher-order function

νx.λy.(y = x) : name→ bool (81)

is observationally equivalent to λy.false; this is because the fresh name x remains private in
the body of the function and is never revealed to the caller – the function can intuitively
never return true. We dub this phenomenon “privacy”.

We show that the same is true for the random model: By identifying sets and character-
istic functions, the analogue of (81) is a random singleton set {X} where X is a random real
number. We prove that in quasi-Borel spaces, the set-valued random variable {X} is equal
in distribution (Section 4) to the empty set

{X} d
= ∅ (82)

This result uses methods from descriptive set theory; its applicability however is broad: By
considering a certain pathological Borel set B ⊆ R2 (Theorem 28.8), we can show that it is
inconsistent to distinguish {X} from ∅ with positive probability in any higher-order model
that conservatively extends standard Borel probability. Thus, every higher-order probabilis-
tic programming language will exhibit name generation-like phenomena like Privacy.

To give an example of our method, we demonstrate that it is impossible to define a func-
tional ∃ : 2R → 2 which tests if a given Borel set is nonempty. Such a functional would easily
distinguish {X} and ∅. However, given any Borel subset B : R2 → 2 of the plane, we could
then define its projection π(B) : R→ 2 via currying as

π(B) = λx.∃(λy.B(x, y))

156

In the setting of probability theory, we require the invariant that all definable expressions
are measurable so that integration can be used. However, it is not true that for every Borel
set B, the projection π(B) is again Borel. Thus ∃ cannot exist in the model. Our probabilistic
interpretation of the ν-calculus gives a new intuition for such definability results. The ques-
tion of the closedness of Borel sets under projection has an interesting history: Originally
believed to be true by Lebesgue, Suslin proved that this is not the case. This result became
the starting point of the notion of ‘analytic sets’ and the discipline of descriptive set theory.
We refer to [Kechris, 1987] for an exposition to the field.

Name generation itself is commutative and discardable, and can thus be considered a
synthetic probabilistic effect. However, it has some unusual properties which set it apart
from ordinary probability, and synthetic probability is precisely the right language to dis-
cuss these differences: For example, we have seen in (82) that the variable {X} is equal in
distribution to the constant ∅, but is not independent the variable X! Similarly, the variable
X cannot admit a conditional distribution given {X}, because that would mean extracting
information that is private. Higher-order probability requires a refined analysis in terms of
the “dataflow axioms” of Section 9.

Full abstraction: Our random model of the ν-calculus is a surprisingly good fit. Extending
the privacy result, we can show that two name-generating expressions Γ ` M1, M2 : τ are
observationally equivalent if and only if their denotations are equal in quasi-Borel spaces.
This holds for all τ which are first-order function types, that is non-nested function types of
the form τ1 → · · · → τn with τi ∈ {name, bool}.

Informal Theorem (Full abstraction – Theorem 29.10) Quasi-Borel spaces are a fully abstract
model for the ν-calculus up to first-order function types.

This is surprising for an ‘off-the-shelf’ model such as quasi-Borel spaces; simple models
of name generation such as nominal sets don’t even validate the privacy equation (Propo-
sition 26.2). Note that because λ and ν don’t commute in the call-by-value ν-calculus, first-
order function types can encode a considerable amount of complexity. For example, we have
an observational equivalence

νa. νb. λx. if (x = a) then a else b ≈ νb.λx.b (83)

because the name a is private on the left. On the other hand, the similar function

νa. νb. λx. if (x = a) then b else a (84)

does not simplify, because calling it twice reveals both a and b. Our random semantics takes
care of this, as we explain – the concept of higher-order measurability alone gives rise to
sophisticated information hiding.

23.1 Outline

In Section 24, we review the ν-calculus, its semantics and contextual equivalence. In Sec-
tion 25, we review nominal sets, a traditional model for name generation, from a synthetic
probabilistic viewpoint. This section is illustrative of the concepts of name generation and

157

helps contrasts the equivariance of nominal sets with the group action in Section 29, but is
not a prerequisite for what follows. In Section 26, we discuss the phenomenon of private
names in detail and show that validating privacy means violating the positivity axiom of
Section 9.

In Section 27, we review quasi-Borel spaces and show that they form a probabilistic
model of the ν-calculus (Theorem 27.15). In Section 28, we show that quasi-Borel space
semantics validates the privacy equation, that is a random singleton set is equal to the emp-
tyset (Theorem 28.1). Our proof makes use of a construction from descriptive set theory. In
Section 29, we prove our main full abstraction result: Two ν-calculus terms at a first-order
type are observationally equivalent if and only if their denotation in quasi-Borel spaces is
equal.

Our proof of full abstraction proceeds in two steps

(i) On the syntactic side, we give a normalization algorithm for observational equivalence
at first order. Our algorithm, which appears to be novel, refines a logical relations
argument by Pitts and Stark [1993], by identifying and eliminating all private names
as in (83). Our construction simplifies the analysis of observational equivalence at first
order. This also provides a general strategy for proving full abstraction.

(ii) Returning to the semantic side, we show that the normalization steps are validated
in the quasi-Borel space model. The key idea here is that atomless measures such as
the normal and uniform distributions are invariant under certain translations. We use
this translation invariance to reduce our problem to the privacy equation, and use this
to prove full abstraction at first order. Our use of an invariant action on the space of
names is similar to but distinct from nominal techniques of Section 25; our action is
internal to the model, and does not feature in its construction.

24 Name Generation and the ν-Calculus

We introduce name generation as a computational phenomenon, which will lay the founda-
tions for the mathematical models of name generation we are considering. The ν-calculus [Pitts
and Stark, 1993; Stark, 1994] is a computational λ-calculus with a construct for name gener-
ation. It has higher-order functions and follows a call-by-value evaluation strategy. We will
start by recalling its syntax, operational semantics and observational equivalence:

The ν-calculus has two ground types bool for booleans and name for names, as well as
function types

τ ::= bool | name | τ → τ

Terms M are formed as follows

M ::= x | true | false |M = M |MM | λx.M | νn.M | if M then M else M

with typing rules given in Figure 8. The signature construct νn.M is read as “create a new
name, bind it to the variable n and continue with M”. Names can be compared for equality
using the boolean equality test M = N. The generic effect (see Section 3.6) of name gen-

eration is sometimes written new
def
= νa.a. Note that Stark’s work formally distinguishes

158

Γ ` x : τ
((x : τ) ∈ Γ)

Γ ` b : bool
(b = true, false)

Γ ` M : bool Γ ` N1 : τ Γ ` N2 : τ

Γ ` if M then N1 else N2 : τ
Γ ` M : name Γ ` N : name

Γ ` (M = N) : bool

Γ, x : name ` M : τ

Γ ` νx.M : τ

Γ, x : σ ` M : τ

Γ ` λx.M : σ→ τ
Γ ` M : σ→ τ Γ ` N : σ

Γ ` M N : τ

Figure 8: Grammar and typing rules for the ν-calculus [Pitts and Stark, 1993, Table 1].

between variables of type name and ‘free names’. We will avoid this distinction here, but
take explicit care in Sections 24.1 and 24.2 that all names bound to variables corresponding
to free names must be distinct.

Convention (Ground, First-Order, Higher-Order): In this thesis, we distinguish ground
types and higher-order types. Ground types are bool, name while higher-order types are all
function types. By first-order types, we mean the simplest higher-order types consisting of non-
nested functions τ1 → τ2 → . . . → τn with each τi ground. A typical first-order type is
name → name → bool, a typical second-order type is (name → bool) → bool. To be precise,
the order of a type can be defined recursively following Stark [1994]

order(bool) = order(name) = 0 order(σ→ τ) = max(order(σ) + 1, order(τ)).

This is contrasted with other conventions which say ‘first-order’ for what we call ‘ground’.
Much focus in this chapter lies on first-order types. Because the ν-calculus is an effectful
call-by-value language, those types already encode a considerable amount of complexity
and cannot be simplified by currying, e.g.

name→ name→ bool 6∼= (name× name)→ bool

even if we extended the language with product types. This will be evident by the translation
into the monadic metalanguage, where N→ T(N→ T2) 6∼= N×N→ T2.

24.1 Operational Semantics and Observational Equivalence

The evaluation relation of the ν-calculus is defined on expressions, those are terms with free
variables of type name, and no other free variables. In this operational semantics, these
variables are understood to be names that are generated in the course of running a program,
and so they are assumed to be distinct, and we tend to use m or n for them. If s = {n1, . . . , nk}
is a set of names and τ is a type, we define the set

Expτ(s)
def
=
{

M | n1 : name, . . . nk : name ` M : τ
}

of expressions of type τ only involving the names s, and we define the subset Valτ(s) ⊆
Expτ(s) to consist of the values of the appropriate type, i.e. the expressions λx.M, true, false, n.

159

−
s ` V ⇓τ ()V

s ` M ⇓name (s1)m s ` N ⇓name (s2)n
s ` (M = N) ⇓bool (s1 ⊕ s2)false

m 6= n
s ` M ⇓name (s1)m s ` N ⇓name (s2)m

s ` (M = N) ⇓bool (s1 ⊕ s2)true

s ` M ⇓bool (s1)V (s⊕ s1) ` NV ⇓τ (s2)V′

s ` if M then Ntrue else Nfalse ⇓τ (s1 ⊕ s2)V′
s⊕ {n} ` M ⇓τ (s′)V

s ` νn. M ⇓τ ({n} ⊕ s′)V
n 6∈ s

s ` M ⇓σ→τ (s1)λx.M′ (s⊕ s1) ` N ⇓σ (s2)V (s⊕ s1 ⊕ s2) ` M′[V/x] ⇓τ (s3)V′

s ` M N ⇓τ (s1 ⊕ s2 ⊕ s3)V′

Figure 9: Evaluation relation for the ν-calculus [Pitts and Stark, 1993, Table 2].

If s, t are sets of names, we write s ⊕ t to denote the union s ∪ t with the additional
assumption that s and t must be disjoint (this can always be achieved by renaming free
names if necessary).

The big-step evaluation relation s ` M ⇓τ (s′)V is given in Figure 9, where M ∈ Expτ(s)
and V ∈ Valτ(s ⊕ s′), meaning M evaluates to V generating fresh names s′. This is remi-
niscent of the way the Gaussian language in Section 17 allocates fresh variables. Crucially
however, those variables are not comparable for boolean equality while names are.

Evaluation is terminating and deterministic up to choice of free names. We will not need
to work directly with this evaluation relation very much, because we will build on existing
methods for observational equivalence [Pitts and Stark, 1993; Stark, 1996], but we include it
for completeness.

Example 24.1 We have

∅ ` νm.νn.(m = n) ⇓bool ({a, b})false

That is the program generates two names a, b during its execution and evaluates to the value
false, because a and b are distinct.

Observational equivalence is defined in a standard way. A boolean context C[·] for type τ is
an expression C where some subexpressions are replaced by a placeholder, such that if M ∈
Expτ(s) then C[M] ∈ Expbool(s). Two terms M1, M2 ∈ Expτ(s) are observationally equivalent,
written M1 ≈τ M2, if for every boolean context C[·] we have ∃s′(s ` C[M1] ⇓bool (s′)true)
if and only if ∃s′(s ` C[M2] ⇓bool (s′)true). We omit annotating types where they can be
inferred.

We will discuss some important observational equivalences and distinctions to showcase
the intricacies of name generation. Notice that the creation of fresh names is not directly
observable, only their effects when compared with other names.

Example 24.2 (Stark [1994, Section 2.5.(2)-(3)]) The ν-calculus satisfies the commutativity and
discardability equations up to observational equivalence.

νa.νb.M ≈ νb.νa.M νc.M ≈ M (c /∈ fv(M))

160

This makes the ν-calculus a model of synthetic probability according to Soft Definition 1.0.
We will obtain a precise instance through the definition of a categorical model (Defini-
tion 24.7).

Example 24.3 (λ and ν don’t commute)

νa.λx.a 6≈bool→name λx.νa.a (85)

PROOF This is typical of call-by-value semantics. Calling the function on the left-hand side
twice will return the same name, but will produce different names on the right-hand side.
That is, the context

C[−] = (λ f .(f true) = (f true))(−)

distinguishes the two sides of the would-be equivalence. We have

∅ ` C[νa.λx.a] ⇓bool ({a})true ∅ ` C[λx.νa.a] ⇓bool ({a, b})false

Note that in call-by-name semantics, λ does commute with effects. For example, in the λν-
calculus of Odersky [1994], (85) is an observational equivalence. �

While an observational distinction can be demonstrated by a suitable distinguishing con-
text, observational equivalences are harder to establish, as they quantify over all contexts.
This may require more elaborate methods such as logical relations or denotational seman-
tics. One such equivalence is of crucial importance for the rest of this chapter:

Example 24.4 (Privacy)
νa.λx.(x = a) ≈name→bool λx.false (86)

This equivalence is proved in Pitts and Stark [1993, Example 5] using logical relations.
The intuition is that while the function λx.(x = a) is not constant (it returns true for the
input x = a), there is no programmatic way of extracting the value of a from the function
and supplying it as an argument. The name a is private or hidden in the closure λx.(x = a),
which becomes observationally indistinguishable from λx.false. We therefore dub (86) the
Privacy equation.

The privacy phenomenon yields an array of subtle equivalences at first-order function
types, for example

Example 24.5 At type name→ name we have

νa.νb.λx.if (x = a) then a else b ≈ νb.λx.b

however νa.νb.λx.if (x = a) then b else a 6≈ νa.λx.a

In the first line, a remains private and the true-branch can be removed. In the second equa-
tion, none of the names remain private! Calling the function with a fresh name returns a,
which can then be used to reveal b on a second call. That is, the context

C[−] = (λ f .νc.(f c) = (f (f c)))(−)

distinguishes the two sides.

161

In Section 29, we will show that the privacy equation is under certain assumptions the
only source of complication at first-order types, and our random model will validate it and
thus all first-order observational equivalences .

We finish this subsection with an example of an interesting observational equivalence at
second-order types, which remains outside the methods of this thesis. It is neither validated
by the simple logical relation nor probabilistic semantics, as we explain in Section 30.3.

Example 24.6 (Stark [1994, Section 2.5.(13)])

νa.νb.λ f .((f a)⇔ (f b)) ≈(name→bool)→bool λ f .true

The idea is that any definable function f must treat all fresh names equivalently. Here c1 ⇔
c2 stands for the boolean biconditional, which is definable in the language through nested
if-then-else. This result is proved using a refined logical relation.

24.2 Categorical Semantics

Stark [1996] gives denotational semantics to the ν-calculus by translating it to Moggi’s monadic
metalanguage with an if-then-else construct. The translation is standard for computational
λ-calculi (see Section 3.3), though care is needed to model distinctness assumptions on free
names.

Definition 24.7 (Stark [1996, Section 4]) A categorical model of the ν-calculus comprises

(i) a cartesian closed category C with finite limits

(ii) a commutative and affine monad T on C

(iii) a disjoint coproduct 2 def
= 1 + 1 of the terminal object with itself

(iv) a distinguished object of names N with a decidable equality test (=) : N × N → 2

(v) a distinguished morphism new : 1→ TN satisfying the following equation

m : N ` let n ← new in [(n, m = n)] = let n ← new in [(n, false)] (FRESH)

This definition references ‘disjoint coproducts’ and ‘decidable equality’, concepts from
categorical logic, but we will not assume familiarity with these in the rest of the thesis. We
refer to Stark’s paper and [Carboni et al., 1993] for reference.

Because the monad T is assumed affine and commutative, categorical models of the ν-
calculus immediately fit the definition of a categorical model of probability from Section 5.

In any categorical model, we can interpret ν-calculus types as objects, using the standard
call-by-value translation into the monadic metalanguage:

JboolK def
= 2 JnameK def

= N Jσ→ τK def
= JσK→ TJτK

This is extended to contexts via products. A ν-calculus term Γ ` M : τ is routinely inter-
preted as a term of the metalanguage and hence a morphism JΓK → TJτK by induction on
the structure of M (Figure 10).

162

Jλx.MK def
= [λx.JMK] JxK def

= [x] JtrueK def
= [true] JfalseK def

= [false]

JM = NK def
= let m = JMK in let n = JNK in [m = n] JM NK def

= let f = JMK in let x = JNK in f (x)

Jνx.MK def
= let x = new in JMK Jif M then N1 else N2K

def
= let b = JMK in if b then JN1K else JN2K

Figure 10: Interpretation of ν-calculus expressions in a categorical model, using its metalan-
guage [Stark, 1996, Figure 5].

Using the categorical limits and the equality test on N, we can build a subobject N 6=s �
Ns for all finite sets s, modelling the assumption (6= s) of distinct names. Formally, N 6=s is
the equalizer of (n : Ns ` ∨i 6=j(ni = nj) : 2) and (n : Ns ` false : 2). For expressions M ∈

Expτ(s), we will typically use the restricted interpretation JMK 6=s : N 6=s � Ns JMK−−→ TJτK.
We note that values V ∈ Valτ(s) factor through the unit of the monad [−]JτK : JτK→ TJτK,

and we will sometimes write |V| : N 6=s → JτK for the pure semantics. Any categorical model
according to Definition 24.7 is sound and, under mild assumptions, adequate:

Theorem 24.8 (Stark [1994, Theorems 3.10, 3.11]) For any categorical model of the ν-calculus:

• The big-step semantics is sound with respect to the denotational semantics: If s ` M ⇓τ (s′)V
then JMK 6=s = Jνs′.VK 6=s.

• If 1 is not an initial object and [−]2 : 2 → T(2) is monic, then the denotational semantics
is adequate for observational equivalence: If JM1K 6=s = JM2K 6=s then M1 ≈τ M2, for all
expressions M1, M2 ∈ Expτ(s).

Aside on the ‘Mono’ requirement: When working with the monadic metalanguage, sev-
eral authors [Stark, 1996; Moggi, 1991] ask that the monad T satisfy the requirement

[−]X : X → TX is monic for all X (MONO)

While this is certainly a natural requirement, the adequacy theorem only needs the Mono
requirement at the object 2.

Categorical models are axiomatized to be sound and correct for ground computation.
However they need not identify observationally equivalent terms at higher types: We will
see that simple models do not validate the privacy equation (86). Much of our study will be
devoted to understanding which higher observational equivalences a model validates.

25 Aside on Traditional Models of Name Generation

We give a digression on nominal sets [Pitts, 2013b], which are a traditional model of name gen-
eration. This model is explicitly constructed with the concept of α-equivalence in mind, and
captures many name generation phenomena precisely. Nominal techniques are widespread
in computer science and underlie languages such as FRESH O’CAML [Shinwell and Pitts,

163

2005].

While nominal sets aren’t required for understanding our probabilistic model, they pro-
vide relevant intuitions for name generation, especially the failure of the Privacy equation
(Proposition 26.2). It is also interesting to contrast the notion of equivariance in nominal sets
with our use of group actions in Section 29.2.

In this section, we give a brief introduction to nominal sets with an eye towards a prob-
abilistic reading: Name generation can be seen as a simple generalized probability theory
which only knows perfect correlation and independence. Our treatment of nominal sets is
purely expository, and fully based on Pitts’ book. The phrasing in terms of synthetic proba-
bility is novel; we give a combinatorial definition of a Markov category for name generation
in (Proposition 25.19) reminiscent of Section 14. Propositions 25.20 and 25.21 are new.

25.1 Nominal Sets

What’s in a name? That which we call a rose
By any other name would smell as sweet;

– WILLIAM SHAKESPEARE, Romeo and Juliet

The following propositions can be found in [Pitts, 2013b, Chapters 1-3].

Definition 25.1 (Nominal set) Fix a countably infinite set A whose elements we call atoms
or names (written a, b, c, . . .) and let Perm(A) denote the group of finite permutations of A.
A nominal set is a set X with a Perm(A)-action (π, x) 7→ π · x such that every x ∈ X has a
finite support, that is there exists a finite set A ⊆ A such that

∀π ∈ Perm(A)((∀a ∈ A(π(a) = a))⇒ π · x = x) (87)

A morphism of nominal sets is an equivariant function f : X → Y, i.e. for all permutations
π we have f (π · x) = π · f (x). Nominal sets and equivariant functions form the category
Nom.

We write supp(x) for the least set A satisfying (87), which exists when x comes from a nomi-
nal set, and write x # y if supp(x)∩ supp(y) = ∅. Note that to give a point 1→ X of a nominal
set is to give an invariant element x ∈ X. The most important nominal set is the set of atoms
A itself, endowed with the permutation action π · a = π(a).

Finite products and coproducts in Nom are computed like in Set with pointwise actions.
If X, Y are two Perm(A)-sets, the set of all functions Set(X, Y) has an action defined via

(π · f)(x) = π · f (π−1 · x)

We call a function f : X → Y finitely supported if it has a finite support under this action.

Proposition 25.2 If X, Y are nominal sets, then the nominal set

(X →fs Y)
def
= { f : X → Y | f finitely supported }

164

is an exponential object in Nom, along with the equivariant evaluation map

evX,Y : (X →fs Y)× X → Y, (f , x) 7→ f (x)

A function is equivariant if and only if its support is ∅, that is

Nom(1, X →fs Y) ∼= Nom(X, Y)

Proposition 25.3 Nom forms a complete and cocomplete topos. Subobjects A� X can be identified
with equivariant subsets A ⊆ X, that is a subsets such that x ∈ A ⇒ π · x ∈ A. The topos Nom

is two-valued, its subobject classifier is the discrete nominal set 2. We have a natural bijection

{ equivariant subsets A ⊆ X } ∼= Nom(X, 2)

Example 25.4 (Internal powerset) A subset A ⊆ A is finitely supported if and only if A is
finite or cofinite, in which case

supp({a1, . . . , an}) = {a1, . . . , an} = supp(A \ {a1, . . . , an})

The internal powerset of A consists of the finite-cofinite subsets,

P(A) ∼= (A→fs 2) ∼= {A ⊆ A finitely supported }

The invariant subsets of A are in bijection with the invariant elements of P(A); those are
only ∅ and A.

Definition 25.5 (Separated product) For nominal sets X, Y, define their separated product as

X ∗Y = {(x, y) ∈ X×Y : x # y}

The separated product defines a symmetric monoidal structure on Nom. This structure is in
fact monoidal closed.

Definition 25.6 For n ∈N, we define the nominal set A#n as

A#n = {(a1, . . . , an) ∈ An all distinct }.

This is isomorphic to the n-fold separated product of A with itself.

Example 25.7 (Failure of choice) Nom violates various formulations of the axiom of choice.
Cardinality is an equivariant map, in particular let

A[2] = {A ⊆ A : |A| = 2}

then the map p : A#2 → A[2], (a, b) 7→ {a, b} is an equivariant surjection. Yet p admits no
section, and in fact there is no equivariant map f : A[2] → A at all (hence no map to A#2 by
extension).

Nominal sets can in fact be identified with a Fraenkel-Mostowski model of set theory with
atoms, which provides a counterexample to the axiom of choice. The importance of the sets
A#n is underlined by the fact that Nom can be presented as a Grothendieck topos where the
objects A#n are the representables.

165

Proposition 25.8 (Pitts [2013b, 6.3]) Nom is equivalent to the Schanuel topos, that is to covariant
sheaves [Inj, Set] for the atomic topology. Here Inj denotes the category of finite sets and injections.
The Yoneda lemma reads

Nom(A#m, A#n) ∼= Inj(n, m)

Concretely, every equivariant map A#m → A#n is of the form

(a1, . . . , am) 7→ (a f (1), . . . , a f (n))

where f : n→ m is injective.

25.2 Name Generation Monad

We now recall the monad T on nominal sets which is commonly used to model name gen-
eration. T is formally introduced as the free restriction set monad in [Pitts, 2013b, Chapter
9.5] but we’ll simply refer to it as the name-generation monad. The construction of T is rem-
iniscent of the writer monad (Section 5.2) for the monoid (Pf(A),∪, ∅) of finite subsets of
A. That is, an execution produces a result together with a finite set of generated names. The
permutation action of nominal sets is then used to consider those names up to α-equivalence
as well as discard unused ones, which lets them behave correctly like bound names.

Definition 25.9 (α-equivalence) Let X be a nominal set, then define an equivariant equiva-
lence relation ∼ on Pf(A)× X by (A, x) ∼ (A′, x′) if there exists π ∈ Perm(A) such that

(i) π · x = x′

(ii) supp(x) \ A = supp(x′) \ A′

(iii) ∀a ∈ (supp(x) \ A)(π(a) = a)

We call the quotient TX and write (A)x or {a1, . . . , an}x for the equivalence class of (A, x).

Note that supp((A)x) = supp(x) \ A; the names listed in A are bound and considered up to
α-equivalence.

Example 25.10 Every element of T(A) is equal to {}a for some a ∈ A, or to the element
ν = {a}a. In particular T(A) ∼= A + 1. We call the unique point ν : 1→ T(A) the fresh name
distribution.

The construction T can be given the structure of a strong monad as

T f ((A)x) = (A) f (x), [x] = {}x, join((A)(B)x) = (A ∪ B)x

when A, B are fresh enough sets of names.

Remark 25.11 Unlike for all the monads we have seen previously, the strength for T has to
do nontrivial amounts of work: This is where all the capture-avoiding renaming happens.
For example, in

stA,A(a, {a}a) = stA,A(a, {b}b) = {b}(a, b)

166

the bound name a had to be renamed to b to avoid collision. Formally, giving a strength
corresponds to an enrichment

T : (X →fs Y)→ (TX →fs TY)

that correctly extends the functorial action from equivariant to finitely supported functions.
The tensor in the Kleisli category crucially involves the strength and hence renaming, e.g.

ν⊗ ν = let x ← ν in let y ← ν in [(x, y)]

= let x ← {a}a in let {a}a ← ν in [(x, y)]

= let x ← {a}a in let {b}b ← ν in [(x, y)]

= {a, b}(a, b)

Proposition 25.12 (i) For any discrete nominal set X, TX ∼= X

(ii) The monad T is affine and commutative.

(iii) Like the writer monad, T preserves all colimits

Proposition 25.13 Nom forms a categorical model of the ν-calculus with

(i) A as object of names

(ii) T as the name generation monad

(iii) new = ν : 1→ T(A).

PROOF We verify (FRESH). Indeed, the morphism

Jm : A ` let n ← new in [(n, m = n)]K : A→ T(A× 2)

sends the name a to {b}(a, a = b) = {b}(a, false), so it equals

Jm : A ` let n ← new in [(n, false)]K. �

Aside on zero-one laws: The isomorphism T(2) ∼= 2 can be interpreted as stating that in
Nom, the only probabilities are 0 and 1. Given a distribution 1→ T(X), every property X →fs

2 will hold almost surely or almost never. This gives further credibility to our statement that
names are about perfect correlation and independence.

Results in probability theory indicating that certain properties must hold almost surely
or almost never are known as zero-one laws. Famous such laws are Kolmogorov’s zero-one
law for tail events and the Hewitt-Savage zero-one law for symmetric events. Zero-one laws
are generally typical of ergodic theory, which deals with measure-preserving transforma-
tions. Permutations and the fresh-name measure exhibit similar ideas. Recently, synthetic
versions of these laws have been formulated [Fritz and Rischel, 2020]. In more elementary
terms, many statements about name generation are ‘some/any theorems’, meaning that if
they hold for some fresh enough name, they will hold for any fresh enough name [Pitts,

167

2013b, Theorem 3.9]. Again, this is reminiscent of zero-one laws.

Before we address the higher-order properties of name generation in Section 26, we out-
line some of the ground behavior of name generation, for which Nom is fully abstract. Here,
the name generation monad admits a compact combinatorial description.

Proposition 25.14 (i) The name generation monad satisfies

T(A ∗ B) ∼= T(A) ∗ T(B) (88)

(ii) In particular

T(A#n) ∼= ∑
k

(
n
k

)
A#k.

PROOF The first statement says that for a separated a pair (x, y) with x # y, all bound names
in (A)(x, y) can be split to affect either only x or y; there is no correlation. The second
statement follows from the binomial theorem

T(A ∗ · · · ∗A) ∼= (A + 1) ∗ · · · ∗ (A + 1)

and the fact that X ∗ (−) is a left adjoint and thus commutes with coproducts. Concretely,
every element of T(A#n) looks like {ai1 , . . . , aik}(a1, . . . , an) where {i1, . . . , ik} ⊆ {1, . . . , n}.�

We proceed to classify the joint distributions on An. We do this by splitting An into
orbits depending depending on which entries of a tuple of names (a1, . . . , an) are equal to
one another.

Proposition 25.15 Let Bn (for Bell number) denote the set of equivalence relations on n. The map
E : An → Bn given by

E(a1, . . . , an) = {(i, j) ∈ n× n : ai = aj}

is equivariant, and decomposes An into orbits

An ∼= ∑
R∈Bn

E−1(R)

If the equivalence relation R has k blocks, then E−1(R) ∼= A#k by choosing k distinct names (one for
each block), and repeating that name inside the block. In conclusion

An ∼= ∑
k

Sn,kA#k

where Sn,k denotes the Stirling number of the second kind.

Corollary 25.16 The nominal set An has precisely 2Bn equivariant subsets.

Example 25.17 The space A2 decomposes into orbits

A2 = {(a, b) : a 6= b} ∪ {(a, b) : a = b}

168

and is thus isomorphic to A#2 + A. We have

T(A2) ∼= T(A#2) + T(A) ∼= (A#2 + 2A + 1) + (A + 1)

corresponding to all different shapes of elements

{}(a, b), {a}(a, b), {b}(a, b), {a, b}(a, b), {}(a, a), {a}(a, a)

In fact
T(A2) ∼= T(A)× T(A) + 1

which shows that T does not preserve products; all elements of T(A2) decompose into prod-
uct distributions except {a}(a, a). The only two global states 1→ T(A2) are ν⊗ ν (indepen-
dence) and let x ← ν in [(x, x)] (perfect correlation).

Example 25.18 The double distribution space

T(T(A)) ∼= A + 1 + 1

has the two points [ν] = {}({a}a) and let a ← ν in [[a]] = {a}({}a).

We finish with a combinatorial account of a Kleisli category for ground name generation.
Its construction is reminiscent of the Markov category BetaBern in Section 14.

Proposition 25.19 Consider the full subcategory Atoms of nominal sets isomorphic to finite sums of
representables

∑
i

niA
#ki

Then Atoms is closed under products, coproducts, separated products, and the name generation
monad. Furthermore, Atoms is equivalent to FinFam(Injop), that is

(i) objects are finite lists (A1, . . . , An) of finite sets

(ii) morphisms (A1, . . . , Am) → (B1, . . . , Bn) consist of a function f : m → n and injections
gi : B f (i) → Ai for all i ∈ m.

PROOF It remains to see that the products of Atoms-objects lie again in Atoms. This is not au-
tomatic because Inj does not have coproducts. However, we can still decompose the product

A#m ×A#n

into sums of representables. Alternatively, we notice that Atoms consists, up to isomorphism,
of the equivariant subsets of An for n ∈N. �

We conclude with some novel structural remarks about the Kleisli category of the name
generation monad:

Proposition 25.20 The monad T on Nom satisfies the representability condition (Definition 6.8).

169

PROOF Let ξ = (A)x be an element of T(X). Without loss of generality, we can assume that
A ⊆ supp(x) and write A + B = supp(x). Assume that ξ is deterministic (Section 6.3), i.e.

(A)(x, x) = (A + A′)(x, σ · x)

where A′ ∩ supp(x) = ∅ consists of fresh names and σ is a bijection A ∼= A′ fixing B. By
definition of α-equivalence, there is a permutation π such that

π · (x, x) = (x, σ · x)

We conclude that x = π · x = σ · x. Therefore

A + B = supp(x) = supp(σ · x) = A′ + B

from which we obtain A = A′ = ∅, that is ξ = {}x is pure. �

Proposition 25.21 The Kleisli category NomT does not have all conditionals (see Definition 8.13).

PROOF Consider the joint distribution µ ∈ T(2A ×A) given by

µ = {a, b}({a, b}, a)

Then µ admits no conditional f = µ|1 : 2A → T(A). Indeed, by equivariance, f ({a, b})
cannot take the value {}c for any c ∈ A. The remaining alternative is that f ({a, b}) = {c}c,
but the composite

let (A,) ← µ in let c ← f (A) in [(A, c)] = {a, b, c}({a, b}, c)

fails to reconstruct µ, as evidenced by pushing forward under

(3) : 2A ×A→ 2 �

It is the same statement as Proposition 26.4, though the proof idea differs because Nom

invalidates Privacy (Proposition 26.2). We remark that all objects of Atoms are strong nominal
sets admitting a tighter notion of ‘strong support’ [Tzevelekos, 2008a], while the space 2A

used as a counterexample in Proposition 25.21 does not. We wonder if the Kleisli category
of T restricted to Atoms does have all conditionals.

We now return to our study of the ν-calculus and observational equivalences at higher
types.

26 Name Generation at Higher Types

As we have seen, ground computation with fresh names has a straightforward combinato-
rial account (Proposition 25.19). The real interest involves the higher-order features of the
ν-calculus, that is the interaction of name generation with function types: This is where in-
teresting phenomena like privacy and information hiding happen.

We recall that categorical models of the ν-calculus need not validate observational equiv-
alences at higher types. An example is given in Proposition 26.2: The nominal sets model
does not validate the privacy equation (86). We thus make the following definition:

170

Definition 26.1 (Full abstraction) A categorical model of the ν-calculus is fully abstract at
type τ if

M1 ≈τ M2 ⇒ JM1K = JM2K

All nondegenerate categorical models are fully abstract at ground types (Theorem 24.8). We
will be interested in full abstraction at first-order function types.

26.1 The Privacy Equation

The privacy equation (86) is arguably the simplest nontrivial observational equivalence at a
higher type. Its categorical intepretation is

let a ← new in [λx.[x = a]] = [λx.[false]] : TJname→ boolK = T(N → T2) (89)

The metalanguage has extra types such as N → 2 which are not the interpretation of
ν-calculus types, so it is possible to consider the following stronger and slightly simpler
variation of (89) by getting rid of one layer of the monad:

let a ← new in [λx.(x = a)] = [λx.false] : T(N → 2). (PRIV)

Equation (PRIV) implies (89) by postcomposing with [−]2 : 2 → T2. Under common as-
sumptions (which we will always meet), (89) also implies (PRIV). This is for example the
case if 2 → T2 is split monic (a strengthening of (MONO)). We will thus say that a categori-
cal model verifies the Privacy equation if (PRIV) holds. Every model which is fully abstract
at first order types has to validate the Privacy equation, and a converse holds under certain
assumptions (Section 29.2).

We begin by observing that the nominal sets model does not validate Privacy, hence it is
not fully abstract at first order [Stark, 1994, 3.6].

Proposition 26.2 (Failure of Privacy) Nom does not validate the Privacy equation (PRIV).

PROOF Identifying 2A ∼= P(A), the Privacy equation asks whether

({a}){a} = ({})∅ ∈ T(2A) (90)

that is, ‘is the fresh singleton equal to the emptyset’? But these elements are not identified
in the name-generation monad, because we cannot α-covert {a} into ∅. More formally, we
have seen that cardinality is an equivariant notion, so in particular the nonemptiness-check

∃ : 2A → 2, ∃(A) = [A 6= ∅]

is a morphism in Nom and can be used to distinguish the two sides of (90). �

We will contrast this with the situation for Qbs (which has a weak subobject classifier Ω 6∼= 2)
in Proposition 28.4 and Attempt 28.5.

171

Stark has given a logical relation R which captures observational equivalence up to first-
order types, that is

M1 ≈τ M2 ⇔ M1 Rτ M2

He has categorified this relation to give a variant of the nominal sets model which achieves
full abstraction at first-order types [Stark, 1994, 4.4]. We will not use his model further, except
to argue that the notion of a fully abstract categorical model is not vacuous. Our main result
is that the random model of name generation in quasi-Borel spaces achieves the same level
of abstraction out of the box. Stark’s logical relation is not part of the construction of this
model, however we will make use of it in the proof (Section 29).

We proceed with some structural implications of the Privacy equation.

26.2 Privacy contradicts Positivity

The Privacy equation states that a fresh singleton set is indistinguishable from the empty
set. This is very intuitive in the context of name generation, yet strange from the viewpoint
of synthetic probability: For any given name A, the set X = {A} is nonempty, but if we
sample A freshly, the resulting “random set” X becomes empty. Note that this is only the
case if information about A does not leak, because otherwise we can use the membership
check A ∈ (−) to distinguish X from ∅. This sort of information-hiding behavior makes
name generation the canonical example of a non-positive probability theory (Section 9).

Recall that in statistical terms, the ‘positivity’ axiom (Section 9.1) says that constants are

independent of everything. In the model A ∼ new and X = {A}, Privacy implies that X d
=

∅ is deterministic. However X is not independent of A! The precise categorical phrasing is
as follows:

Proposition 26.3 Any categorical model of the ν-calculus which validates the Privacy equation must
violate positivity.

PROOF Consider the joint distribution

µ = let a ← new in [({a}, a)] ∈ T(2N × N) (91)

Then by the Privacy equation, the first marginal let a ← new in [{a}] = [∅] is deterministic,
yet µ is not the product of its marginals [∅]⊗ new because the map

(3) : 2N × N → 2

distinguishes them. This contradicts the deterministic marginal property, which is equiva-
lent to positivity (Proposition 9.3). �

From this example, we conclude that the failure of positivity has no inherent connection
to negative probabilities. Proposition 26.3 applies to Stark’s logical relations model (which
only has ‘probabilities’ {0, 1}) as well as to quasi-Borel spaces (Theorem 28.1), which feature
standard [0, 1]-valued probabilities. Rather, Positivity is a dataflow property which prevents
hiding of information in the sense of Section 9. One could, with some artistic license, con-
sider Privacy a form of limited destructive interference where the nonempty set X = {A}

172

becomes empty after “blurring out”, i.e. randomizing, the value of A. We will briefly revisit
the idea of information leaking in Section 30.5.

Proposition 9.4 states that the existence of conditionals implies positivity. Hence the
privacy equation must be at odds with conditioning. We can construct the following concrete
counterexample:

Proposition 26.4 Any categorical model of the ν-calculus which validates the Privacy equation can-
not have all conditionals.

PROOF Consider again the distribution (X, A) ∼ µ from (91). Then intuitively, once we
throw away the copy of A, we cannot recover its value from X = {A} alone, because that
information has been hidden. Formally, let µ|1 : 2N → T(N) be an attempted conditional,
then the instantiation of (38)

let x ← [∅] in let a ← µ|1(x) in [(x, a)] = [∅]⊗ µ|1(∅)

fails to reconstruct µ, because (3) : 2N × N → 2 distinguishes both distributions. �

Conditionals cannot exist because they would require the extraction of private information.

26.3 Towards Probabilistic Semantics for Name Generation

We have so far given an analysis of name generation as a synthetic probabilistic effect. For
the remainder of this chapter, we will interpret name generation using actual probability. As
explained in Section 23, this is well motivated by practice, as for example many implemen-
tations of gensym return a random symbol. Such implementations work well if collisions of
names are sufficiently unlikely. In fact, if we draw names from a continuous distribution ν

such as a Gaussian, collisions will have probability 0 and the freshness equation (FRESH)
holds.

We begin by recalling atomless distributions on standard Borel spaces and argue that
they interpret ground name-generating programs. The challenge for interpreting the full ν-
calculus is then to find a cartesian closed model of probability which supports higher-order
functions, equality tests and atomless distributions. This will be achieved in Section 27.

Definition 26.5 (Atomless distribution) The following are equivalent for a probability mea-
sure ν on a standard Borel space X

(i) if X, Y ∼ ν are independent, then Pr(X = Y) = 0

(ii) ν satisfies (FRESH), i.e. let x ← ν in [(x, x = y)] = let x ← ν in [(x, false)].

(iii) ν({x}) = 0 for all x ∈ X

We call a measure satisfying these conditions atomless18.
18this is sometimes called continuous measure in the literature

173

PROOF We have (i) ⇒ (iii) because if ν({x0}) = p > 0 then P(X = Y) ≥ p2. (iii) means
let x ← ν in [x = y] = [false] which implies (ii) by the deterministic marginal property for
Meas (Proposition 9.3). (ii) implies (i) by integrating over y and marginalizing. �

It is straightforward to argue that this probabilistic semantics is adequate for ground
name-generating computation. We interpret names in a standard Borel space N and sample
fresh names through an atomless measure ν : 1 → G(N). This satisfies all requirements of
Definition 24.7 except cartesian closure.

It remains to wonder which measurable space N to choose as space of names: It is clear
that N must be uncountable for an atomless measure measure to exist. Apart from that, we
can think of a multitude of examples:

(i) The reals carry plenty of atomless probability measures, like the Gaussian distribu-
tions, but none of them is particularly canonical.

(ii) The interval [0, 1] carries the uniform distribution, which is just the restricted Lebesgue
measure.

(iii) So does the circle S1 ∼= [0, 1). This space furthermore carries a group structure (ad-
dition modulo 1) under which the measure is invariant. This will come in handy in
Section 29.2.

(iv) Cantor space 2ω carries a measure which can be interpreted as an infinite sequence of
fair coin flips. This would correspond to an idealized gensym returning an infinitely
long random bitstring.

It turns out that all of these choices are equivalent:

Proposition 26.6 (e.g. Kechris [1987, 17.41]) Let u denote the uniform distribution on [0, 1]. If ν

is any atomless probability measure on a standard Borel space X, then there is a measurable isomor-
phism f : [0, 1]→ X such that ν = f∗u.

Intuitively, for the purposes of name generation, it should never matter which particu-
lar atomless measure we employ. Recall that questions about name generation are {0, 1}-
valued, so intermediate values that ν assigns should never come up. This is of course an
abstraction that can be broken (Section 30.3), but surprisingly, the abstraction will be perfect
up to first-order types. For now, we can frame this as a meta-principle to guide our intuitions:
For example, we can expect certain sets to be countable or cocountable based on the following
lemma (which led us to conjecture Lemma 28.9):

Lemma 26.7 Let X be an uncountable standard Borel space and A ⊆ X be a measurable subset such
that all atomless measures ν assign A the same value c. Then c ∈ {0, 1}, and A is countable or
cocountable.

PROOF Towards a contradiction, assume that both A and Ac are uncountable. By Theo-
rem 4.4, we can find a Borel isomorphism f : [0, 1] → X such that f−1(A) = [0, 1/2]. By
pushing forward appropriate atomless measures on [0, 1] along f , we obtain atomless mea-
sures on X which assign A arbitrary values. �

174

As an aside, it is instructive to recall the measurable space X from Example 6.7, which fails
to interpret name generation in an interesting way: If X is uncountable and equipped with
the countable-cocountable σ-algebra, then the measure ν(A) = [A cocountable] satisfies con-
dition (iii) of Definition 26.5. However, unlike fresh name generation, ν is deterministic and
the equality test is not measurable. The issue here is that X is not a standard Borel space.

27 Quasi-Borel spaces and Higher-Order Probability

The question for the remainder of the chapter is: Can we find a genuinely probabilistic
higher-order model of the ν-calculus? If so, how abstract is it?

Quasi-Borel spaces [Heunen et al., 2017] are a convenient setting including both mea-
sure theory and higher-order functions, which are increasingly widely used (e.g. [Lew et al.,
2019; Sato et al., 2019; Ścibior et al., 2017; Vandenbroucke and Schrijvers, 2020]). They work
by first restricting probability theory to the well-behaved domain of standard Borel spaces,
and then provide a conservative extension to function spaces, achieving cartesian closure.
We have surveyed other models of higher-order probability in Section 4.3.

In this chapter, we recall the theory of quasi-Borel spaces and show that they give a
categorical model of the ν-calculus (Theorem 27.15). In the consecutive sections, we will
then take an in-depth look at the theory of random functions obtained that way, and show
that quasi-Borel space semantics is fully abstract up to first-order types (Theorem 29.10). All
definitions are taken from Heunen et al. [2017] unless otherwise stated.

Definition 27.1 A quasi-Borel space is a set X together with a collection MX of distinguished
functions α : R→ X called random elements. The collection MX must satisfy

(i) for every x ∈ X, the constant map λr.x lies in MX

(ii) if α ∈ MX and ϕ : R→ R is Borel measurable, then α ◦ φ ∈ MX

(iii) if {Ai}∞
i=1 is a countable Borel partition of R and αi ∈ MX are given, then the case-split

α(r) = αi(r) for r ∈ Ai lies in MX

A map f : X → Y between quasi-Borel spaces is a morphism if for all α ∈ MX we have
f ◦ α ∈ MY. This defines a category Qbs. As usual, we will sometimes write (X, MX) to
emphasize the particular quasi-Borel structure.

We consider the reals with their canonical quasi-Borel structure MR = Meas(R, R). Un-
der that definition, we can recover the random elements of any other quasi-Borel space X as
MX = Qbs(R, X).

Definition 27.2 (i) A discrete quasi-Borel space carries the minimal quasi-Borel structure
consisting only of simple functions, that is α ∈ MX if there exists a countable Borel
partition R = ∑∞

i=1 Ai such that f is constant on each Ai.

(ii) An indiscrete quasi-Borel space carries the maximal quasi-Borel structure in which every
function R→ X is a random element.

175

We consider the booleans 2 as a discrete quasi-Borel space. Equivalently, M2 = Meas(R, 2)
where 2 is a discrete measurable space. This is an instance of a general construction to pass
between quasi-Borel structures and σ-algebras:

Definition 27.3 (i) any measurable space X has an induced quasi-Borel structure MX

whose random elements are precisely the measurable maps R→ X

MX
def
= Meas(R, X)

(ii) a subset A ⊆ X of a quasi-Borel space is deemed measurable if its characteristic function
is a morphism X → 2. We obtain a σ-algebra on X by

ΣX
def
= Qbs(X, 2)

Equivalently, ΣX is the greatest σ-algebra making all random elements measurable:

A ∈ ΣX ⇔ ∀α ∈ MX, α−1(A) Borel. (92)

It is important to note that if we begin with a measurable space (X, ΣX), the induced σ-
algebra ΣMX on the quasi-Borel space (X, MX) will in general not equal ΣX. The categorical
relationship between these constructions is clarified as follows

Proposition 27.4 (Heunen et al. [2017, Prop. 15]) The assignments

M : (X, MX) 7→ (X, MX) Σ : (X, MX) 7→ (X, ΣX)

are functorial and form an adjunction

Qbs Meas

Σ

M

a

The adjunction is idempotent and we have ΣMΣ = Σ and MΣM = M.

As a small digression, it is instructive to consider the following “overlap” between Meas

and Qbs that is fixed by the adjunction.

Definition 27.5 (Standardly generated spaces) For a quasi-Borel space X, the following are
equivalent

(i) X ∼= MY for some measurable space Y

(ii) MX = MΣX for some σ-algebra ΣX on X

(iii) X = MΣX.

The analogous conditions are equivalent for measurable spaces Y and quasi-Borel structures
MY. We call spaces satisfying the equivalent conditions standardly generated19. We denote the
full subcategories of standardly generated spaces as SQbs ⊆ Qbs, SMeas ⊆ Meas respectively.

19in analogy with compactly generated Hausdorff spaces, also known as k-spaces, in topology. Terminology due
to Heunen, Kammar, Staton, Yang (unpublished communication)

176

Proposition 27.6 The following spaces are standardly generated

(i) Standard Borel spaces

(ii) Discrete spaces

(iii) Indiscrete spaces

Furthermore

(iv) The adjunction 27.4 restricts to an equivalence of categories SQbs ∼= SMeas

(v) SQbs ↪→ Qbs is a reflective subcategory with reflector MΣ. SMeas ↪→ Meas is a coreflective
subcategory with coreflector ΣM

PROOF Standard Borel spaces fixed by the adjunction due to Heunen et al. [2017, Prop. 15].
We defer the proof that (in)discrete measurable spaces are mapped to (in)discrete quasi-Borel
spaces and vice versa to the appendix (Propositions 34.1 and 34.2). The last two bullet points
are simple categorical corollaries. �

The functor M restricts to a full and faithful embedding Sbs → Qbs. We will generally
identify standard Borel spaces with their images in Qbs and write say R or 2 for the quasi-
Borel space and measurable space alike. This is formally justified by proposition 27.14. Note
that while standard Borel spaces are standardly generated, the converse is not true. The
relationships of the different categories are shown in the following Venn diagram:

We will later show that the function space 2R is an example of a space that is not standardly
generated Proposition 28.12.

27.1 Cartesian closure

Unlike Meas, quasi-Borel spaces do admit a well-defined notion of function space:

Proposition 27.7 (Heunen et al. [2017, Prop. 18]) Qbs is cartesian closed, with YX = Qbs(X, Y).
A morphism R→ YX is a random element if and only if its uncurrying R× X → Y is a morphism.

For example, the space 2R comprises the characteristic functions of Borel subsets of R, and
the random elements R→ 2R are the curried characteristic functions of Borel subsets of R2.
Identifying subsets with their characteristic functions, the following notation corresponds to
currying:

177

Notation 27.8 For a subset A ⊆ X × Y of a product and x ∈ X, we write Ax = {y ∈
Y | (x, y) ∈ A} for the (vertical) slice of A at x.

Under this notation, all random elements R→ 2R are of the form x 7→ Ax where A ⊆ R2

is a Borel subset of the plane. The quasi-Borel structure on 2R induces a σ-algebra Σ2R on the
set 2R, which is well-known in the literature as ‘Borel-on-Borel’ (we will analyze this further
in Section 28). For now, we can use Aumann’s result to illustrate the crucial fact that Σ does
not preserve products:

Example 27.9 By cartesian closure, the evaluation map (3) : 2R ×R → 2 is a morphism of
quasi-Borel spaces, hence (3) ∈ Σ2R×R. However by Aumann’s result (Theorem 4.11), (3)
is not measurable in the product-σ-algebra Σ2R ⊗ ΣR. Hence the canonical map

Σ(2R ×R)→ Σ(2R)× Σ(R)

is not an isomorphism. We’ll see a purely probabilistic proof of this statement in Proposi-
tion 28.10, which doesn’t presuppose Aumann’s result.

In general, the σ-algebra ΣX×Y is strictly bigger than ΣX ⊗ ΣY. Another instance of this
is the following: It is easy to see that finite products of discrete quasi-Borel spaces are again
discrete, but the same is not true for uncountable measurable spaces, as P(X) ⊗ P(Y) (
P(X×Y). We finish with a categorical remark:

Proposition 27.10 (Heunen et al. [2018]) Qbs is a category of concrete sheaves on a concrete site.
In particular, it is a Grothendieck quasitopos.

This brings it on a similar footing such as diffeological spaces [Baez and Hoffnung, 2008],
which are of interest to semantics [Huot et al., 2020]. There is an object Ω which classifies
strong subobjects20, given by the space {true, false} carrying the indiscrete structure. Given
any quasi-Borel space X and a subset A ⊆ X, its characteristic function χA : X → Ω is a
morphism. However note that χA does not factor through 2 → Ω unless A is a measurable
subset of X.

27.2 Probability on Quasi-Borel Spaces

In order to define how probability works in the quasi-Borel setting, we consider the source
of all randomness to come from some probability distribution µ on R. The random elements
R→ X tell us how this randomness may be pushed forward onto X. Two such random ele-
ments are identified if their laws agree as measures on the induced σ-algebra. The definition
of ΣX makes sure the pushforward is well-defined.

Definition 27.11 A probability distribution on a quasi-Borel space X is an equivalence class
[α, µ] where α ∈ MX, µ ∈ G(R) and we let

[α, µ] = [α′, µ′]⇔ α∗µ = (α′)∗µ
′ ∈ G(X, ΣMX)

20making Ω a weak subobject-classifier!

178

We note that the significance of the induced σ-algebra on a quasi-Borel space X is to
give a notion of equality of distributions on X, which is simply extensional equality of the
pushforward measures. Unlike in Meas, the σ-algebra does not determine the maps into X
unless X is standardly generated.

There is a Giry-like strong monad P on Qbs which sends X to the space of probability
distributions on X, endowed with the quasi-Borel structure

MP(X) = {β : R→ P(X) | ∃α ∈ MX, κ ∈ Meas(R,G(R)), β(r) = [α, κ(r)]}

For x ∈ X, one can form the Dirac distribution δx on X by taking δx = [λr.x, µ] for any
µ ∈ G(R). This forms the unit of the monad. We reduce the bind of P to the bind of the
Giry monad: Given f : X → P(Y) and [α, µ] ∈ P(X), we have f α ∈ MP(Y) so there is some
β ∈ MY and κ : R → G(R) such that f (α(r)) = [β, κ(r)]. We define a distribution on Y
by taking f+([α, µ]) = [β, g+(µ)]. The monad obtained that way satisfies the axioms of a
probability monad.

Example 27.12 For a discrete space X, to give a distribution in P(X) is to give a countable
discrete probability distribution on X. For an indiscrete space X, we have P(X) ∼= 1.

PROOF For the discrete case, all probability must be pushed forward along a simple func-
tion, therefore the resulting distribution has countable support. This contrasts with the
case of Meas where measures on P(X) are difficult to classify. If X is indiscrete, we have
ΣX = {0, X} hence any two probability measures on X are equal. �

Proposition 27.13 (Heunen et al. [2017, Prop. 22]) The monad P is strong, affine and commuta-
tive.

Probability theory over standard Borel spaces is the same whether done in Meas or Qbs

Proposition 27.14 (Heunen et al. [2017, Prop. 19, 22]) The embedding Sbs→ Qbs preserves count-
able products, countable coproducts and probability monads.

Nonpreservation of products: Example 27.9 shows that joint distributions in Qbs more
subtle than in Meas. If µ ∈ P(X), ν ∈ P(Y) are two distributions with laws defined on ΣX, ΣY
respectively, then their product distribution µ ⊗ ν ∈ P(X × Y) will have a law defined on
ΣX×Y which may be strictly larger than the product σ-algebra ΣX ⊗ ΣY. Because µ, ν are
of the restricted form of Definition 27.11, their product measure can be unambiguously ex-
tended beyond the product-σ-algebra on which product measures are usually defined. Note
that membership in ΣX×Y is not given inductively but via universal quantification (92). This
gives the theory much needed flexibility for Section 28, while also making it more difficult
to work with.

27.3 Quasi-Borel Spaces model the ν-Calculus

We can now give probabilistic semantics to the ν-calculus (Definition 24.7) by interpreting
names as elements of a quasi-Borel space and name generation as random sampling.

Theorem 27.15 Qbs is a categorical model of the ν-calculus under the following assignment:

179

(i) the object of names is N is any uncountable standard Borel space

(ii) the name-generation monad is P

(iii) new is given by any atomless distribution ν ∈ P(N).

PROOF Because all spaces involved are standard Borel, this conservatively (Proposition 27.14)
extends the ground semantics of Section 26.3. Moreover, Qbs semantics is adequate (Theo-
rem 24.8) because 0 6∼= 1 and the unit [−]2 : 2 → P(2) is split monic just like in measure
theory (Example 4.10). �

As explained in Section 26.3, we have many different isomorphic choices for the space of
names N, such as R or Cantor space. We will take advantage of this in section 29.2, where it
will be convenient to work with the circle S1.

Aside: In Stark’s adequacy proof (Theorem 24.8), it is only required that [−]2 : 2 →
P(2) be monic. By using ‘separated’ quasi-Borel spaces we can support the full (MONO)
requirement. We mention this for completeness with respect to the literature, and will not
require this notion later in this chapter.

Definition 27.16 A quasi-Borel space X is separated if the maps X → 2 separate points, mean-
ing that for all x 6= x′ ∈ X there is some morphism f : X → 2 such that f (x) 6= f (x′).

This is equivalent to saying that the induced σ-algebra ΣMX on X separates points.

Proposition 27.17 A quasi-Borel space X is separated if and only if it satisfies the (MONO) rule,
i.e. [−]X : X → P(X) is injective. Additionally, we have: standard Borel spaces are separated; if
X, Y are separated, so is X×Y; if Y is separated, so is YX; and for every X, P(X) is separated.

PROOF Assume X is separated and [x] = [x′]. Then for all f : X → 2, we have f (x) =∫
f (y)[x](dy) =

∫
f (y)[x′](dy) = f (x′); by separatedness this implies x = x′. Conversely let

X satisfy (MONO) and assume that for all f : X → 2 we have f (x) = f (x′). Then [x] = [x′]
because [x](A) = χA(x) = χA(x′) = [x′](A) for all A ∈ ΣX, so by injectivity x = x′. For
products and function spaces, the required separating maps can be easily constructed from
projections and evaluations. If µ 6= µ′ ∈ P(X), then µ(A) 6= µ′(A) for some A ∈ ΣX, hence
f (ψ) = [evA(ψ) = µ(A)] separates µ and µ′. �

Therefore all quasi-Borel spaces interpreting ν-calculus types are automatically separated.

28 The Privacy Equation in Qbs

We now turn to the proof that Qbs is a fully abstract model of the ν-calculus at first-order
types: In this section, we prove an important stepping stone, namely that the privacy equa-
tion holds in Qbs. This is instructive as the simplest nontrivial observational equivalence
at a higher type. Furthermore, in Section 29.2, we manage to reduce all other first-order
observational equivalences to Privacy using syntactic methods.

The proof of the privacy equation on the other hand requires an analysis of the σ-algebra
Σ2R with tools from descriptive set theory.

180

Theorem 28.1 (Privacy for Qbs) Qbs validates the privacy equation (PRIV). This means that the
random singleton is indistinguishable from the empty set:

let x ← ν in [{x}] = [∅] : P(2R) (93)

In statistical notation, we would consider a Borel set-valued random variable {X}where

X ∼ ν. Privacy states that {X} d
= ∅ in distribution. Before presenting the proof of the theo-

rem on page 183, we will try out several natural attempts at distinguishing ∅ from {X}, and
see why those attempt fail.

To be completely formal, let us call the distribution on the left hand side of (93) rs
def
=

(let x ← ν in [{x}]) for ‘random singleton’. In each of the attempts, we will consider some
form of predicate ρ : 2R → Y into a test space Y, and compare the pushforwards ρ∗rs and
ρ∗δ∅. If those were different, we would have shown rs 6= δ∅; but in each case, we’ll see that
the pushforwards agree.

Attempt 28.2 (Membership test) Fix a number x0 ∈ R. We try and distinguish the two
random sets by testing membership of x0. However, this fails to distinguish {X} from ∅,
because X is sampled from an atomless distribution, that is

Pr(x0 ∈ {X}) = Pr(X = x0) = 0 = Pr(x0 ∈ ∅).

Formally, we’re considering the evaluation morphism evx0 : 2R → 2 and find that its push-
forward fails to distinguish rs from δ∅, because

(evx0)∗rs = δfalse = (evx0)∗δ∅

Note that the failure of this attempt only uses freshness. As discussed in (85), this is a strictly
weaker statement than Privacy because λ and ν don’t commute (and freshness does hold in
the nominal set model, while Privacy does not).

Attempt 28.3 (Applying measures) We try to distinguish {X} from ∅ by considering the
value assigned to these sets by some test measure µ on the reals. Of course we always have
µ(∅) = 0, so now we have to analyze the distribution of the number µ({X}).

If µ is an s-finite measure on R, then evaluating it is morphism of quasi-Borel spaces

µ : 2R → [0, ∞]

as shown in [Ścibior et al., 2017, §4.3]. We can however show that µ({X}) = 0 almost surely,
hence µ∗rs = δ0 = µ∗δ∅. This is because by s-finiteness, the set S = {x : µ({x}) > 0} of
atoms of µ must be countable, and µ({X}) 6= 0 only if X ∈ S, which has probability zero
under the atomless measure ν.

The condition that µ is s-finite is crucial for the attempt above: For example, the count-
ing measure | − | would distinguish singletons from the emptyset, but as we’ll now see, the
function

| − | : 2R →N∪ {∞}

181

is not a morphism of quasi-Borel spaces and thus cannot serve as a valid predicate in the
attempt. The use of the counting measure is similar to the idea of using the nonemptyness
check 2A → 2 to break privacy in nominal sets Section 26.1. We now show that this function
is incompatible with Borel-based probability:

Proposition 28.4 The nonemptiness check ∃ : 2R → 2 is not a morphism of quasi-Borel spaces.

PROOF We repeat the argument from page 156 in quasi-Borel spaces: Assume towards a
contradiction that ∃ : 2R → 2 were a morphism. There exists a Borel subset B ⊆ R2 of the
plane whose projection π(B) ⊆ R is not Borel (e.g. [Kechris, 1987, 14.2]). The characteristic
function χB : R×R → 2 is a morphism, and so is its currying β : R → 2R. We obtain that
the characteristic function of the projection χπ(B) = ∃ ◦ β is a morphism, because it is the
composite of two morphisms. But π(B) is not Borel, resulting in a contradiction. �

An immediate corollary is that the singleton set {∅} ⊆ 2R is not measurable. Further-
more, the equality check between sets 2R × 2R → 2 is not a morphism in Qbs.

Attempt 28.5 (Nonemptiness check II) Recall from Proposition 27.10 that Qbs is a quasito-
pos; we can define a nonemptiness check

∃ : 2R → Ω

whose codomain is the weak subobject classifier Ω. Ω is the space {true, false} with the
indiscrete structure. This poses no contradiction to Privacy because Ω is an indiscrete space
and hence P(Ω) ∼= 1. Applying ∃∗ to the Privacy equation results in the peculiar but valid
identity [true] = [false] ∈ P(Ω). The space Ω violates (MONO) requirement.

Proof of the privacy equation: Generalizing the case of the nonemptiness predicate, the
strategy is to show that any predicate 2R → 2 which can distinguish {X} and ∅ cannot be
measurable. For this we must analyze the σ-algebra Σ2R on 2R in detail. Recall the notation
Ax = {y : (x, y) ∈ A} for the slice of a subset. If we identify the space 2R = Qbs(R, 2) with
the Borel subsets of R then every morphism α : R → 2R is of the form x 7→ Ax for A ⊆ R2

Borel. If U ⊆ 2R is a collection of Borel sets, then α−1(U) = {x : Ax ∈ U}. This yields the
following characterization of the induced σ-algebra Σ2R :

Definition 28.6 (e.g. Kechris [1987]) A collection U ⊆ 2R of Borel sets is Borel-on-Borel if for
all Borel A ⊆ R2, the set {x ∈ R | Ax ∈ U} is Borel.

A family U is measurable in 2R if and only if it is Borel-on-Borel. Examples of such fami-
lies include the examples from before, like the family of null sets with respect to a Borel prob-
ability measure, but also plenty further notions like the family of meager sets (e.g. [Kechris,
1987, §18.B]). The collection {∅} is not Borel-on-Borel. No general classification of Borel-on-
Borel families seems known.

We will now proceed to prove a key lemma (Lemma 28.9) about Borel-on-Borel families
which can be used to derive Privacy. A first proof this lemma was communicated to the
authors by Alexander Kechris. We have since developed an independent proof based on the
notion of Borel inseparability (Definition 28.7):

182

Definition 28.7 (e.g. Kechris [1987]) Let X be a standard Borel space. Two disjoint sets A, A′ ⊆
X are said to be Borel separable if there is a Borel set B ⊆ X such that A ⊆ B and A′ ∩ B = ∅.
A, A′ are Borel inseparable if no such set exists.

We will now exhibit a pathological Borel set B whose existence renders distinguishing {X}
from ∅ inconsistent:

Theorem 28.8 (Becker [Kechris, 1987, 35.2]) There exists a Borel set B ⊆ R2 such that the sets

B0 def
= {x ∈ R | Bx = ∅} and B1 def

= {x ∈ R | Bx is a singleton}

are Borel inseparable.

Lemma 28.9 Let U ⊆ 2R be Borel on Borel. If ∅ ∈ U then {r} ∈ U for all but countably many
r ∈ R.

PROOF Let A = {r ∈ R | {r} /∈ U}. This is a Borel set because U is Borel-on-Borel.
Now suppose for the sake of contradiction that A were uncountable. Because A is an

uncountable Borel subset of a standard Borel space, it must be isomorphic to R (Section 4.2).
Fixing such an isomorphism, we find by Theorem 28.8 a Borel set B ⊆ R× A such that B0, B1

are Borel inseparable.
Now, if r ∈ B0 then Br = ∅ ∈ U . On the other hand, if r ∈ B1 then Br = {a} for some

a ∈ A, and so Br = {a} /∈ U . It follows that B0 ⊆ {r ∈ R | Br ∈ U} and B1 ⊆ {r ∈ R |
Br /∈ U}. As U is Borel on Borel, {r ∈ R | Br ∈ U} provides a Borel separation of B0, B1, a
contradiction. �

We obtain the Privacy equation as a corollary of this lemma:

PROOF (PROOF OF THEOREM 28.1) To show that the two quasi-Borel measures in (93) are
equal, we must check that their pushforward measures agree on the measurable space (2R, Σ2R),
meaning that for all U ∈ Σ2R we have

∅ ∈ U ⇐⇒ ν({r ∈ R | {r} ∈ U}) = 1.

Every such U is Borel-on-Borel, and by possibly taking complements we can assume that
∅ ∈ U . By Lemma 28.9, the set {r ∈ R | {r} ∈ U} is co-countable, and because ν is atomless
this must have ν-measure 1. �

Generalizations: We offer some comments about this proof. The strategy we employed is
surprisingly general and extends beyond the category of quasi-Borel spaces. Take any model
of higher-order probability which agrees with standard Borel spaces on ground types, or at
least satisfies the following minimum requirements

(i) all morphisms R→ 2 are Borel measurable

(ii) all Borel maps R2 → 2 are available as morphisms

183

Then the Borel-on-Borel property is a necessary constraint on second-order functions 2R →
2, arising from cartesian closure alone. Also Becker’s set is present in the model, so Lemma 28.9
applies and it is inconsistent for any predicate to tell apart the empty set from a random sin-
gleton with positive probability.

It is now merely an extensionality aspect of the Qbs that these constraints are sufficient
for Privacy, that is the inability to distinguish the empty set from singletons implies equality
in distribution. The category of sheaves in [Staton et al., 2016] features a more intensional
probability monad, where the two sides of the privacy equation presumably cannot be iden-
tified.

28.1 Consequences

Having proved the privacy equation, we can immediately apply the results from Section 26
to quasi-Borel spaces. In particular

(i) the probability theory on function spaces like 2R is non-positive (Proposition 26.3)

(ii) conditionals on 2R cannot exist in general, because that would mean extracting private
information (Proposition 26.4)

We can derive further interesting corollaries: For example, the probability theory on Meas

is positive (Proposition 9.5). This mismatch with Qbs allows us to re-derive Example 27.9 in
a purely probabilistic way:

Proposition 28.10 The functor Σ does not preserve the product 2R ×R.

PROOF The distribution ψ = let x ← ν in [({x}, x)] on the measurable space Σ(2R)× Σ(R)

still has a deterministic first marginal by Privacy. If (3) : Σ(2R)× Σ(R) → 2 were measur-
able, we could use it to show that ψ is not the product of its marginals, contradicting the
positivity of Meas. This is a special case of Aumann’s result that (3) is not measurable in
any product-σ-algebra. �

Similar arguments can be constructed to show that other products are not preserved: For
example, the Lebesgue measure ` : 2[0,1] → [0, 1] is a morphism [Ścibior et al., 2017, §4.3]
which has a section given by sending the value a ∈ [0, 1] to the interval [0, a] of length a. The
distribution

(let a ← ν in [({a}, [0, a])]) ∈ P(2[0,1] × 2[0,1])

violates the deterministic marginal property as in Proposition 28.10, showing that Σ does not
preserve the product 2[0,1] × 2[0,1]. Because R ∼= [0, 1] in Qbs, the same is true for 2R × 2R.

Another interesting corollary concerns the difference between random functions and
their graphs:

Example 28.11 Let the injection Γ : RR → 2R×R send a function to its graph Γ f (x, y) = [y =

f (x)]. There exist distinct random functions with identical random graphs.

184

PROOF Consider the following random functions in P(RR) from Example 24.5

f = let a ← ν in [λx.a], g = let a ← ν in let b ← ν in [λx.if x = a then b else a]

Then f 6= g can be witnessed by calling f twice, i.e. if p : RR → 2 is defined by

p(h) def
= [h(0) = h(h(0))]

then p∗ f = [true] while p∗g = [false]. The graphs of f , g are the following random subsets
of R2

Γ f = let a ← ν in [λ(x, y).(y = a)]]

Γg = let a ← ν in let b ← ν in [λ(x, y).if x = a then (y = b) else (y = a)]

Using Privacy, we obtain that both graphs are in fact equal to the empty set [λ(x, y).false]. �

Using Lemma 28.9, we can also show that 2R is not standardly generated (Definition 27.5).

Proposition 28.12 The space 2R is not isomorphic to M(X) for any measurable space X.

PROOF By Definition 27.5 it is sufficient to show that M2R is strictly smaller than MΣ2R
. Let

f : R → R be a bijective function that is not measurable, and let A ⊆ R2 be the graph of
f . By [Srivastava, 1998, Theorem 4.5.2], the set A is not Borel and hence the map α : R →
2R, x 7→ Ax = { f (x)} does not lie in M2R . However α ∈ MΣ2R

, that is α is a measurable
map from R to (2R, Σ2R). Namely, for every U ∈ Σ2R , we have α−1(U) = {x : { f (x)} ∈ U}.
By Lemma 28.9, the set S = {x : {x} ∈ U} is always countable or cocountable, and so is
α−1(U) = f−1(S) by bijectivity of f . So the preimage is a Borel set as desired. �

29 Full Abstraction at First-Order Types

Building on the Privacy equation, we will now prove that Qbs semantics is fully abstract for
first-order types. The proof proceeds in two stages:

• In Section 29.1, we construct a normal form for observational equivalence at first-order
types which eliminates the use of private names. The normalization algorithm is of
interest on its own right, and builds on a logical relation due to Pitts and Stark [1993].

• In Section 29.2, we show that Qbs validates our normalization procedure and is there-
fore fully abstract at first-order types. We make use of a measure-invariant group struc-
ture on the space of names to reduce this problem to the privacy equation: Privacy
is in this sense the prototypical observational equivalence at first-order types. The
group-theoretic argument amounts to a novel way of treating private names as inter-
changeable, which is distinct but related to the idea of equivariance in nominal sets
(Section 25).

185

29.1 A Normal Form for Observational Equivalence

We define a normalization procedure for first-order expressions which lets us decide their
observational equivalence. The key idea is to identify and eliminate private names in such
expressions, as those are not observable. At first-order types, this is the only obstruction,
unlike for higher types where names can be partially revealed in more complicated ways
(e.g. Example 15 in [Stark, 1994]).

Convention: In order to save space, we will abbreviate the types name and bool as N and
B respectively.

η-normal form: Let τ be a first-order type. By the deterministic reduction relation of the
ν-calculus, it is possible to expand every expression M ∈ Expτ(s) into an η-normal form.
Ground values are already in normal form, and in a λ-abstraction, we must immediately and
exhaustively case-analyze its argument. If s = {n1, . . . , nk} is a set of names, we introduce
the notation

if x = n ∈ s then Mn else M0

as shorthand for the case-split

if x = n1 then Mn1 else if · · · else if x = nk then Mnk else M0

Note that in M0, the variable x is known to be distinct from all n ∈ s and can thus be treated
as a fresh name. We also write νs.M as shorthand for νn1.νnk.M. The η-normal forms
can be formally defined as follows

NFval
B (s) = {true, false} NFval

N (s) = {n | n ∈ s}
NFval

B→τ(s) = {λb.if b then Mtrue else Mfalse |Mtrue, Mfalse ∈ NFexp
τ (s)}

NFval
N→τ(s) = {λx.if x = n ∈ s then Mn else Mν | (∀n ∈ s)Mn ∈ NFexp

τ (s), M0 ∈ NFexp
τ (s⊕ {x})}

NFexp
τ (s) = {νt.M |M ∈ NFval

τ (s⊕ t)}

Every M ∈ Expτ(s) is provably (in the metalanguage) equal to an η-normal form.

Public normal form: Different η-normal forms can still be observationally equivalent; the
Privacy equation implies that the following normal forms behave the same:

νa.λx.if x = a then true else false ≈ λx.false

The creation of the private name a prevents the normal forms from being unique. We there-
fore aim to restrict η-normal forms to public normal forms where, whenever new names are
created in an expression νt.M, all n ∈ t must be public, i.e. observable in some appropriate
sense. Every η-normal form can be refined to a public normal form by identifying which
names are private and eliminating them, as well all case-statements associated to them. This
is reminiscent of escape analysis and garbage collection (more in Section 30.2).

To understand this process better, consider the transposition function (a b) : N → N

which swaps a and b

(a b) def
= λx.if x = a then b else if x = b then a else x (94)

186

One can show that the fresh transposition is observationally equivalent to the identity func-
tion, because both names a and b remain private

νa.νb.λx.(a b) x ≈ λx.x (95)

Removing the two unreachable if–branches x = a and x = b makes both sides equal

λx. if x = a then b else if x = b then a else x = λx.x (96)

This example reveals another subtlety: Privacy of names is not an absolute concept, but must
be defined relative to what other names are publicly known. a and b are jointly private, but
if say a were public, then we could use the transposition to also reveal b.

In principle, given an η-normal form M ∈ NFτ(t) and a subset of initially known public
names s ⊆ t, one can give an inductive definition of the set Pub(M, s) ⊆ t of names which
can be revealed by accessing M. We have s ⊆ Pub(M, s) because names from s are already
public. More generally Pub(M,−) is a closure operator, i.e. also monotonic and idempotent.
From the previous examples, we have

Pub((a b), ∅) = ∅ Pub((a b), {a}) = {a, b} (97)

We call an expression M s-safe (written M ∈ Safes
τ) if Pub(M, s) = s, that is no names beyond

s get leaked. Consequently, the complement t \ s contains the private names of M. We give
formal definitions of these concepts in Definition 29.2.

Given M ∈ Safes
τ, we define a normalization procedure that turns it into a public normal

form pnf(M, s) ∈ NFτ(s), eliminating all private names recursively. That normal form is
shown observationally equivalent to M if only names from s may be used, and is unique
among equivalent terms.

Instead of reinventing all the required combinatorics, we will now express the ideas of
public and private names using a logical relation by Pitts and Stark [1993], which we also
use to prove uniqueness and observational equivalence of our normal forms. This approach
is in particular due to Michael Wolman.

Logical relation at first-order types: Let s1, s2 be sets of names; we write R : s1 � s2 for a
partial bijection or span between s1 and s2. We write R⊕ R′ for the disjoint union of spans be-
tween disjoint sets of names, and we write ids : s⊕ t1 � s⊕ t2 to denote the partial bijection
defined that is the identity on s and undefined on t1, t2.

Pitts and Stark [1993] define two families of relations Rval
τ ⊆ Valτ(s1) × Valτ(s2) and

Rexp
τ ⊆ Expτ(s1)× Expτ(s2) by mutual induction, given in Figure 11. We note that Rval

τ and
Rexp

τ coincide at values, so we will simply write the relations as Rτ. Additionally, by renam-
ing related names we can without loss of generality reduce any span R to a subdiagonal
R = ids between sets si = s⊕ ti.

The logical relation coincides with observational equivalence (≈) at first-order types:

Theorem 29.1 (Pitts and Stark [1993, Theorem 22]) Let τ be a first-order type. Then for M1, M2 ∈
Expτ(s) we have

M1 ≈τ M2 ⇔ M1 (ids)τ M2

187

b1 Rval
B b2 ⇔ b1 = b2 n1 Rval

N n2 ⇔ n1 R n2

(λx.M1) Rval
σ→τ (λx.M2)⇔ ∀R′ : s′1 � s′2, V1 ∈ Valσ(s1 ⊕ s′1), V2 ∈ Valσ(s2 ⊕ s′2),

V1 (R⊕ R′)val
σ V2 ⇒ M1[V1/x] (R⊕ R′)exp

τ M2[V2/x]

M1 Rexp
τ M2 ⇔ ∃R′ : s′1 � s′2, V1 ∈ Valτ(s1 ⊕ s′1), V2 ∈ Valτ(s2 ⊕ s′2),

s1 ` M1 ⇓τ (s′1)V1 & s2 ` M2 ⇓τ (s′2)V2 & V1 (R⊕ R′)val
τ V2

Figure 11: Stark’s logical relation

We will see that the logical relation (ids) has the following specific interpretation at first-
order types τ:

(i) the relation (ids)τ is a partial equivalence relation, in particular it is transitive.

(ii) a term M ∈ Expτ(t) is related to itself as M (ids)τ M if and only if M does not leak any
further names if the names s are known

(iii) (ids)τ relates expressions which are observationally equivalent given names s are pub-
lic

This motivates the following definitions

Definition 29.2 (Public and Leaked Names) Let M ∈ Expτ(t) and s ⊆ t. We define the set
of public names in M given s, denoted Pub(M, s), to be the least set u such that s ⊆ u and

M (idu)τ M. We define the leaked names Leak(M, s) def
= Pub(M, s) \ s as the names that are

revealed beyond s. A term is s-safe if it satisfies any of the equivalent conditions

Pub(M, s) = s ⇔ Leak(M, s) = ∅ ⇔ M (ids) M

We write Safes
τ for the set of s-safe expressions.

We show these definitions are well-defined in Proposition 34.4. The following example
shows how to reason with the logical relation, and identify private and public names

Example 29.3 The privacy equation for the ν-calculus can be established by means of the
logical relation. Because {a, x} ` (x = a) ⇓B false whenever a, x are distinct names, the
following terms are in relation

λx.(x = a) (id∅)N→B λx.false

νa.λx.(x = a) (id∅)N→B νa.λx.false,

By Theorem 29.1 this proves the observational equivalence Equation (86). According to Def-
inition 29.2, the unmatched name a is private. A similar analysis for the transposition (a b)
shows that our definitions validate our examples (95), (97) as desired.

188

Given M ∈ Expτ(s ⊕ t) such that M ∈ Safes
τ holds, we wish to define a normal form

which eliminates all unnecessary private names t. We do this by η-expanding M into a big
case analysis, and dropping all branches pertaining to private names n ∈ t, because those
branches can never be called.

Definition 29.4 (Public normal form) Let σ be a first-order type and M ∈ Expσ(s⊕ t) such
that M ∈ Safes

σ holds. We define the normal form pnf(M, s) by induction on σ as follows:

Ground case: If σ is a ground type and M is a value, then we let pnf(M, s) def
= M.

Function case B→ τ: If M is a value of type B→ τ, expand it into its η-normal form

M = λx.if x = true then Mtrue else Mfalse

for some Mtrue, Mfalse ∈ Expτ(s ⊕ t). We know M (ids)σ M, so by definition of the logical
relation, we also have Mtrue (ids)τ Mtrue and Mfalse (ids)τ Mfalse. We thus define

pnf(M, s) def
= λx.if x = true then pnf(Mtrue, s) else pnf(Mfalse, s).

Function case N→ τ: If M is a value of type N→ τ, expand it into its η-normal form

M = λx.if x = n ∈ s⊕ t then Mn else M0

for some Mn ∈ Expτ(s⊕ t) and M0 ∈ Expτ(s⊕ t⊕ {x}). In this case, M (ids)σ M implies that
M0 (ids⊕{x})τ M0 and Mn (ids)τ Mn for all n ∈ s; nothing can be said for n′ ∈ t because such
Mn′ are not observable. We define the normal form as a case split over s only, while the cases
for the private names t are dropped like in (96):

pnf(M, s) def
= λx.if x = n ∈ s then pnf(Mn, s) else pnf(M0, s⊕ {x}).

Expression case: Because M (ids)σ M, there is some V ∈ Valσ(s⊕ t⊕ w) such that s⊕ t `
M ⇓σ (w)V and V (ids⊕w′)σ V for some w′ ⊆ w. Let u = Leak(M, s) ⊆ w′ consist of those
names which can actually leak from V. Then V (ids⊕u)τ V, so we can define

pnf(M, s) def
= νu.pnf(V, s⊕ u).

That is, we need only create fresh names u which become public given s. All other private
names get eliminated by the normal form.

We verify the following desired properties of the normal form construction.

Proposition 29.5 Let τ be a first-order type and M ∈ Expτ(s⊕ t) with M ∈ Safes
τ. Then

(i) pnf(M, s) is well-defined up to renaming bound variables and names

(ii) if M is a value, so is pnf(M, s)

(iii) pnf(M, s) ∈ Expτ(s), that is pnf(M, s) eliminates the private names t

189

(iv) pnf(M, s) ∈ Safes
τ

(v) M (ids)τ pnf(M, s)

PROOF In the appendix (Proposition 34.6). �

We can now reduce the question of observationally equivalence to the equality of normal
forms:

Theorem 29.6 Let σ be a first-order type and let Mi ∈ Expσ(s⊕ ti) for i = 1, 2. The following are
equivalent:

(i) M1 (ids)σ M2;

(ii) Mi ∈ Safes
σ and pnf(M1, s) = pnf(M2, s) after possibly renaming bound variables and names.

PROOF In the appendix (Theorem 34.7). �

This shows that at first-order types, the elimination of private names is sufficient for full
abstraction.

29.2 Proof of Full Abstraction

We give a semantic corollary of Theorem 29.6: A model is fully abstract if and only if it
validates passing to public normal forms.

Theorem 29.7 Let (C, T) be a categorical model of the ν-calculus. C is fully abstract at first-order
types if and only if for all first-order types τ and all M ∈ Expτ(s), we have

JMK 6=s = Jpnf(M, s)K 6=s. (98)

PROOF That this is necessary is clear, as by Proposition 29.5 normal forms preserve logical
relations and therefore (by Theorem 29.1) observational equivalence. To see that it is suf-
ficient, suppose that C satisfies (98) and let M1, M2 ∈ Expτ(s) for a first-order type τ. If
M1 ≈τ M2, then by Theorems 29.1 and 29.6 pnf(M1, s) = pnf(M2, s), and so

JM1K 6=s = Jpnf(M1, s)K 6=s = Jpnf(M2, s)K 6=s = JM2K 6=s �

The goal of this section is to show that quasi-Borel spaces validate the normalization
procedure. It will be convenient to pick the unit circle T = S1 as the space of names, and let
ν be the uniform measure on T (we may assume this is the case by Section 26.3). We choose
to work with the circle as there is a canonical group structure (T,+) on T (addition modulo
1) that is ν-invariant. This means that the structure maps + : T×T→ T and − : T×T→ T

are morphisms and for all g ∈ T, the shift map x 7→ g + x preserves the measure ν, i.e.
let x ← ν in [g + x] = ν. More generally this implies that for all f : T→ P(X) and g ∈ T,

let x ← ν in f (g + x) =
∫

f (g + x)ν(dx) =
∫

f (x)ν(dx) = let x ← ν in f (x)

The idea of ν-invariance will be used to treat private names as interchangeable in Qbs. This
seems to us a different but related idea to the equivariance in nominal sets (Section 25). Note

190

that in contrast to the space T, the nominal set A of atoms does not admit any group struc-
ture.

The trick is that in an η-normal form, if a private name a appears in an if-branch x = b,
then b must itself be private, because otherwise we could leak a. This gives private names
a form of dependency on another, which we can use to shift them jointly using the group
action. Names shifted that way can be eliminated using a clever combination of a set-
parameter, invariance and the privacy equation. We consider the following instructive ex-
ample:

Example 29.8 We have seen that the fresh transposition normalizes to the identity function,

pnf(νa.νb.λx.(a b)x, ∅) = λx.x.

We wish to show that their semantics are equated in Qbs, i.e. Jνa.νb.λx.(a b)xK = Jλx.xK as
elements of P(P(T)T). To do this, we define a helper function f : 2T ×T3 → T as follows:

f (G, a, b, x) =

(x− a) + b if x− a ∈ G,

(x− b) + a else if x− b ∈ G,

x otherwise.

This function behaves like a generalized transposition, with an extra set-argument G. If
G = ∅, then f (∅, a, b, x) = x is just the identity on x. If G = {g} is a singleton, then

f ({g}, a, b, x) =

g + b if x = g + a,

g + a else if x = g + b,

x otherwise,

which is a transposition whose parameters have been shifted by g. We curry this to give a
map f ′ : 2T ×T2 → P(P(T)T) by f ′(G, a, b) = [λx.[f (G, a, b, x)]], so that now

f ′(∅, a, b) = Jλx.xK and f ′({g}, a, b) = Jλx.(a b)xK(g + a, g + b),

and define h : 2T → P(P(T)T) by integrating out the names a, b:

h(G) = let a ← ν in let b ← ν in f ′(G, a, b)

It is clear that h(∅) = Jλx.xK. On the other hand, by the ν-invariance of the action we have

h({g}) = let a ← ν in let b ← ν in Jλx.(a b)xK(g + a, g + b)

= let a ← ν in let b ← ν in Jλx.(a b)xK)(a, b)

= Jνa.νb.λx.(a b)xK,

independently of g ∈ T.

191

Our problem can now be reduced to the privacy equation. We obtain

Jλx.xK = let G ← [∅] in h(G)

= let G ← (let g ← ν in [{g}]) in h(G)

= let g ← ν in h({g})
= let g ← ν in Jνa.νb.λx.(a b)xK

= Jνa.νb.λx.(a b)xK,

where the second equality is Privacy and the final one discardability.

The crucial idea is that we can define the shifted transposition map using only G = {g}
but without extracting g (which is impossible by Privacy). The map h, which is parameterized
by G, acts as an interpolant between the original denotation and the normal form. Setting
G = ∅ removes the unreachable branches just like the normalization algorithm.

To prove the general full abstraction result, we need to construct such interpolants in a
systematic way: Notation: If~t = (t1, . . . , tn) is a vector in Tn and g ∈ T, we write g +~t =

(g + t1, . . . , g + tn). Additionally, we write let t← ν to be shorthand for drawing t samples
in a sequence:

let t1 ← ν in · · · let tk ← ν.

Proposition 29.9 Let τ be a first-order type and let M ∈ Expτ(s⊕ t). If M ∈ Safes
τ, then there is a

quasi-Borel map
f : 2T ×T 6=s⊕t → P(JτK)

such that
f (∅,~s,~t) = Jpnf(M, s)K 6=s(~s) and f ({g},~s,~t) = JMK 6=s⊕t(~s, g +~t)

whenever (~s, g +~t) ∈ T 6=s⊕t. In the case that M = V is a value, f factors through the unit of the
monad.

PROOF We construct f inductively, in parallel to the construction of the normal forms.

Ground case: If τ is a ground type and V is a value, then pnf(V, s) = V so we simply let

f (G,~s,~t) = Jpnf(V, s)K(~s)

Function case B→ τ: Suppose that V is a value of type B→ τ. We η-expand V, so that

V = λx.if x = true then Mtrue else Mfalse.

By definition of the logical relation and the normal form we have Mtrue, Mfalse ∈ Safes
τ and

pnf(V, s) = λx.if x = true then pnf(Mtrue, s) else pnf(Mfalse, s).

Per inductive hypothesis, we find functions ftrue, ffalse : 2T ×T 6=s⊕t → P(JτK) satisfying the
conditions of Proposition 29.9 for Mtrue and Mfalse. We then define f : 2T×T 6=s⊕t → P(JτK)2

by

f (G,~s,~t) = λx.

{
ftrue(G,~s,~t) if x = true,

ffalse(G,~s,~t) otherwise.

192

It is clear that f (∅,~s,~t) = |pnf(V, s)|(~s) and f ({g},~s,~t) = |V|(~s, g +~t) when (~s, g +~t) ∈
T 6=s⊕t from the properties of ftrue, ffalse.

Function case N→ τ: Suppose that V is a value of type N→ τ. We η-expand V, so that

V = λx.if x = n ∈ s⊕ t then Mn else M0.

By definition of the logical relation and the normal form we have M0 ∈ Safe
s⊕{x}
τ , Mn ∈ Safes

τ

for n ∈ s and

pnf(V, s) = λx.if x = n ∈ s then pnf(Mn, s) else pnf(M0, s⊕ {x}).

Inductively we find functions fn : 2T×T 6=s⊕t → P(JτK) for n ∈ s and f0 : 2T×T 6=s⊕t⊕{x} →
P(JτK) satisfying the conditions of 29.9 for Mn and M0. Writing t = (t1, . . . , tk), we define
f : 2T ×T 6=s⊕t → P(JτK)T similar to Example 29.8 by

f (G,~s,~t) = λx.

fn(G,~s,~t) if x = n ∈~s,

JMt1K(~s, (x− t1) +~t) else if (x− t1) ∈ B,

. . .

JMtkK(~s, (x− tk) +~t) else if (x− tk) ∈ B,

f0(G,~s,~t, x) otherwise.

If G = ∅, then

f (∅,~s,~t) = λx.

{
Jpnf(Mn, s)K(~s) if x = n ∈~s,

Jpnf(M0, s)K(~s) otherwise

so that f (∅,~s,~t) = |pnf(V, s)|(~s). On the other hand, if G = {g} is a singleton, we obtain

f ({g},~s,~t) = λx.

JMnK(~s, g +~t) if x = n ∈~s,

JMt1K(~s, g +~t) else if x = g + t1,

. . .

JMtkK(~s, g +~t) else if x = g + tk,

JM0K(~s, g +~t, x) otherwise

so that f ({g},~s,~t) = |V|(~s, g +~t) when (~s, g +~t) ∈ T 6=s⊕t. Thus f satisfies Proposition 29.9
for V.

Expression case: Suppose that we have constructed these reductions for values of type
τ. Let M be an expression with M (ids)τ M, so by definition of the logical relation and the
normal form there is some V ∈ Valτ(s⊕ t⊕ u⊕ w) such that s⊕ t ` M ⇓τ (u⊕ w)V and
u = Leak(V, s). Therefore V ∈ Safes⊕u

τ and pnf(M, s) = νu.pnf(V, s⊕ u).
By inductive hypothesis, there is a function fV : 2T × T 6=s⊕t⊕u⊕w → P(JτK) satisfying

the conditions of Proposition 29.9 for V and pnf(V, s⊕ u). We then define f : 2T ×T 6=s⊕t →
P(JτK) by

f (G,~s,~t) = let u ← ν in let w ← ν in fV(B,~s,~t,~u, ~w).

193

It follows that

f ({g},~s,~t) = let u ← ν in let w ← ν in fV({g},~s,~t,~u, ~w)

= let u ← ν in let w ← ν in JVK 6=s⊕t⊕u⊕w(~s, g +~t,~u, g + ~w)

= let u ← ν in let w ← ν in JVK 6=s⊕t⊕u⊕w(~s, g +~t,~u, ~w)

= Jνu.νw.VK 6=s⊕t(~s, g +~t)

= JMK 6=s⊕t(~s, g +~t)

whenever (~s, g +~t) ∈ R 6=s⊕t, where the third equality follows by ν-invariance. Similarly, we
verify that f (∅,~s,~t) = Jpnf(M, s)K 6=s(~s). �

Again, the construction described here is not specific to quasi-Borel spaces; it can be
performed completely syntactically in the metalanguage once the object of names carries a
ν-invariant group structure.

It follows that passing to normal forms preserves Qbs semantics, and therefore that Qbs

is fully abstract at first-order types:

Theorem 29.10 Qbs is fully abstract at first-order types.

PROOF By Theorem 29.7 it is enough to show that Qbs validates passing to normal forms.
Let τ be a first-order type and let M ∈ Expτ(s). By Proposition 29.9 there is a quasi-Borel
map f : 2T ×T 6=s → P(JτK) such that

f (∅,~s) = Jpnf(M, s)K 6=s(~s) and f ({g},~s) = JMK 6=s(~s).

Currying, we get a map h : 2T → P(JτK)T 6=s
such that

h(∅) = Jpnf(M, s)K 6=s and h({g}) = JMK 6=s.

for all g ∈ T. It follows from the privacy equation that

Jpnf(M, s)K 6=s = let G ← [∅] in h(G) = let G ← (let g ← ν in [{g}]) in h(G)

= let g ← ν in h({g}) = let n ← ν in JMK 6=s = JMK 6=s. �

30 Related Work and Context

30.1 Names in Computer Science and Statistics

Names are important in almost every area of practical computer science. There are two main
ways to implement name generation: the first is to have one or more servers that determinis-
tically supply fresh names as requested, and the second is to pick them randomly. Our work
has emphasized the surprising effectiveness of the latter approach for programming seman-
tics, in that it provides a model that is fully abstract up to first order, not by construction, but
by general properties of the real numbers.

194

Names might be server names in distributed systems, nonces in cryptography, object
names in object oriented programming, gensym in Lisp, or abstract memory locations in heap-
based programming. Beyond computer science, names play a vital role in logic and set
theory. In the context of probabilistic programming, we emphasize in particular two ways
that names are used in statistics, and the way that name generation is already understood in
terms of randomness there:

• The Dirichlet process can be used as a method for clustering data points where the
number of clusters is unknown. The ‘base distribution’ of a Dirichlet process allocates
a label to each cluster that is discovered. It is common to use an atomless distribution
such as a Gaussian for this, so that the labels are in effect fresh names for the clusters. In
the CHURCH probabilistic programming language, it is common to actually use Lisp’s
gensym as the base distribution for the Dirichlet process [Roy et al., 2008].

• A graphon is a measurable function g : [0, 1]2 → [0, 1], which determines a countably
infinite random graph in the following way: we label nodes in the graph with numbers
drawn uniformly from [0, 1], and there is an edge between two nodes r, s with proba-
bility g(r, s). Thus when building a graph node-by-node, the name of each fresh node
is, in effect, a real number [Orbanz and Roy, 2015].

While many programming languages support name generation directly or through li-
braries, we have here focused on the ν-calculus, which is stripped down so that the rela-
tionship between name generation and functions can be investigated. There are many other
calculi for names, including λν, which is a call-by-name analogue of the ν-calculus [Oder-
sky, 1994], and the π-calculus, for concurrency [Milner, 1999]. Moreover, research on the
ν-calculus has led to significant developments in different directions, including memory ref-
erences (e.g. [Jeffrey and Rathke, 1999; Laird, 2004; Murawski and Tzevelekos, 2016]) and
cryptographic protocols (e.g. [Sumii and Pierce, 2003]). It may well be informative to pursue
quasi-Borel based analyses of these applications in the future.

30.2 Compiler Optimization, Memory and Garbage Collection

One major application of semantic models is in validating observational equivalences that
may be used for compiler optimizations. In probabilistic programming, optimizations are
performed as part of statistical inference algorithms. For instance, discardability and ex-
changeability are simple but useful translations in practical inference [Murray and Schön,
2018; Nori et al., 2014], and partial evaluation and normalization are used in several sys-
tems [Gehr et al., 2020; Shan and Ramsey, 2017]. Our work in this chapter is primarily
foundational, but one application is that a statistical inference algorithm could legitimately
involve our normalization algorithm (Section 29) to simplify certain higher-order functions.
Note that in order to show that the privacy equation and its corollaries are contextual equiv-
alences in real-world probabilistic languages (with recursion), one would invoke the ade-
quacy theorem for ωQbs from [Vákár et al., 2019] to transfer our denotational results.

Equations such as the privacy equation are interesting in that they allow us to analyze
variables captured in closures. The private name a in νa.λx.(x = a) can be eliminated alto-
gether, and never needs to be sampled or captured. In this sense, our normalization proce-

195

dure is a very simple form of compile-time garbage collection or escape analysis [Kotzmann
and Mossenbock, 2007].

Outlook: Name generation and memory Taking the connection to memory further, [Stark,
1994, Chapter 5.9] shows that every model of name generation gives rise to a model of
ground local store, as we recall now: Let (C, T) be a categorical model of name genera-
tion with object of names N, which we now consider as storage locations. If V denotes the

object of storable values, we define the memory as the space of functions Mem
def
= N ⇒ V

from locations to values. We can now define a monad for local state as a monad transformer
with global state Mem,

St(X)
def
= Mem⇒ T(X×Mem).

This comes with morphisms

ref : V → St(N) get : N → St(V) set : N ×V → St(1) (99)

defined as

ref(v) def
= λm.let a ← new in [(a, λb.if b = a then v else m(b))

get(a) def
= λm.[(m(a), m)]

set(a, v) def
= λm.[((), λb.if b = a then v else m(b))

For ref(v) we allocate a fresh location a through new and return it, along with an updated
memory at that location. As Stark says, “consideration of the nu-calculus has isolated the prob-
lematic parts of ML references; actual storage of values is straightforward, if a little tedious in detail”.
Note that local state for V = 1 is mere name generation, as references contain no extra infor-
mation, so Mem ∼= 1 and St ∼= T.

Stark doesn’t quite make explicit what is required of a model of name generation to be
considered adequate for local store. We sketch a program for future work to make this con-
nection precise (going back to discussions with Martín Abadi, Gordon Plotkin, and Paul
Levy). Staton has published a list of 14 axioms for local state [Staton, 2010] which are syntac-
tically complete in the sense of Section 13.3. Verifying the axioms makes use of the Privacy
equation, leading to the following proposition:

Proposition 30.1 A categorical model of name generation gives rise to an adequate model of local
store if it satisfies the Privacy equation, in the sense that is satisfies Staton’s axioms.

PROOF (SKETCH) It is tedious but straightforward to verify that every adequate model of
name generation satisfies 13 out of the 14 axioms. The remaining axiom is (B1), which is the
discardability of ref:21

let a ←St ref(v) in [()]St = [()]St (B1)

21here, we annotate the metalanguage syntax with the monad to distinguish the operations of St from T

196

We can derive (B1) from Privacy as follows:

(let a ←St ref(v) in [()]St)(m)

= let a ←T new in [((), λb.if b = a then v else m(b))

= let e ←T (let a ←T new in [λx.(x = a)]) in [(), λb.if e(b) then v else m(b)]

(93) = let e ←T [λx.false] in [(), λb.if e(b) then v else m(b)]

= [((), λb.if false then v else m(b))

= [((), m))

= ([()]St)(m) �

Thus, every model of name generation that is fully abstract up to first-order gives a model
of local state fully abstract at ground types. Note that because of the higher-order nature of
Mem, (B1) is an example of an equation at the second-order type

V ⇒ (N ⇒ V)⇒ T(1× (N ⇒ V))

We see no issue extending this approach to ‘full-ground memory’ (references to references
etc.), for example letting V = N.

Memory layout randomization: Quasi-Borel spaces are fully abstract up to first-order, so
Proposition 30.1 applies to them: We obtain an adequate probabilistic model of local state where
real numbers are used for locations. In fact, every higher-order probabilistic language is
capable of encoding the complexities of local state that way. This is an interesting source of
random higher-order functions, like for example

ref : V → VR ⇒ P(R×VR)

Randomizing heap layouts is frequently considered in practice for security purposes (e.g.
[Abadi and Plotkin, 2012]). While the interest in those works is more quantitative, it is inter-
esting to see aspects of this reflected in our idealized setting of real numbers.

30.3 Full Abstraction at Higher Types

To deal with this incompleteness of nominal sets, Stark [Stark, 1994, §4.4] proposed a seman-
tic version of the logical relations that we have recalled in Section 29. This model, based on
functors between double categories, is fully abstract at first order, as is ours. Subsequently an
alternative logical relations model was proposed by Zhang and Nowak [2003], by working
with logical relations over a functor category that more clearly distinguishes between public
and private names. Qbs is different in spirit to these models, as it is a general purpose model
of probability theory rather than a model purpose-built for full abstraction. A quasi-Borel
space can be regarded as an R-indexed logical relation (in the sense of Plotkin [1973]), but it
also has a basic role motivated by probability theory.

Recall that none of the models we presented validate the observational equivalence at
second-order from Example 24.6,

νa.νb.λ f .(f a⇔ f b) ≈(N→B)→B λ f .true

197

where⇔ denotes the biconditional of booleans. To see that this equation fails in the quasi-
Borel space model, notice that the order relation on the space of names N = [0, 1] lets us
define a a Qbs morphism half : [0, 1] → P2 given by half(x) = [x > 0.5]. Such a function
is not definable in the ν-calculus because it breaks the abstraction of names: We evaluate
J(λ f .true)K(half) = [true], while

J(νa.νb.λ f .(f a⇔ f b))K(half) =
∫
[0,1]

∫
[0,1]

[a > 0.5⇔ b > 0.5]dadb

returns true with probability 0.5. It is surprising that the abstraction of names as random
numbers is not broken if only first-order functions are involved.

Higher-order observational equivalences such as this one are only validated by Stark’s
refined logical relation [Stark, 1994, Chapter 6], game-semantic models [Abramsky et al.,
2004; Tzevelekos, 2008b] and bisimulation models [Benton and Koutavas, 2008]. In common
with our work, normal forms play an implicit role in those models, but those models are
very different from ours at higher types. In the future it may be interesting to impose further
invariance properties on quasi-Borel spaces to bridge the gap.

30.4 Other Models of Higher-Order Probability

In this chapter, we have focused on quasi-Borel spaces, but it is interesting to compare our
results to other models of higher-order probability have been proposed (Section 4.3). There
are two essential requirements for a model to interpret the ν-calculus with name generation
as randomness

(i) it must support an atomless distribution, such as the normal distribution, on some
uncountable space N;

(ii) it must support equality checking on that space, as a function N × N → 2.

Some models, such as probabilistic coherence spaces [Ehrhard et al., 2014], do not seem
to support atomless distributions, which makes it unclear how to use them for this pur-
pose. Other models are based on the idea that all functions are continuous or computable,
e.g. [Escardo, 2009; Huang et al., 2018] and then it is impossible to have equality checking
for N = R. This leaves plenty of models to explore from Section 4.3.

There are also recent logics for higher-order probability [Sato et al., 2019] and an opera-
tional bisimulation [Lago and Gavazzo, 2019]. We understand from the authors that opera-
tional bisimulation violates the Privacy law, for an interesting reason, and that the boolean
topos model [Simpson, 2017] violates it because of booleanness (as in Proposition 26.2). It
remains to be seen how abstract the other recent models are for interpreting the ν-calculus.
We note that [Dahlqvist and Kozen, 2020; Ehrhard et al., 2018] are currently focused on call-
by-name semantics and so it is not obvious how to use them with the call-by-value ν-calculus
in our setup (see (85)).

Finally, we note the similarity of fresh name generation with urn creation from Chap-
ter III. The Beta distribution on [0, 1] is atomless, but its synthetic analogue νi,j on the type I
is not, purely because equality tests of urns are not expressible in the model. We could allow
them in a refined, linear language where finite sets and injections Inj replace the role of Fin.

198

The new construction would be reminiscent of the construction of nominal sets as sheaves
on Inj.

30.5 Outlook: A Categorical Theory of Information Leaking

In this section, we propose some ideas for looking at positivity and other dataflow axioms
(Section 9) from the perspective of information leaking.

Fix a Markov category C and consider a morphism of the form f : A → X ⊗ E, where
we are interested in X as the relevant output and view E as some additional environment.
Taking the marginal fX : A→ X is a destructive operation, which gets rid of the information
leaked into the environment altogether. A less destructive operation would be to hide the
environment E, giving us a morphism f(X) : A ; X in a different category where E has
merely been removed from sight, but less information is lost.

The formalization presented here is somewhat experimental: We think that the intuitions
of leaking might be more naturally expressed in a higher-categorical language with less quo-
tienting, such as bicategories or double categories. A unification of these concepts with CD
categories remains to be developed.

We include the definition because it has interesting connections to Privacy, the Cond con-
struction (Chapter IV) and the notion of dilation in [Houghton-Larsen, 2021]. Our construc-
tion is similar to the Oles construction [Hermida and Tennent, 2012] and the affine reflection
[Huot and Staton, 2018]. A bicategorical account of privacy has been given in [Stay and
Vicary, 2013]. Section 30.5 is based on joint work with Paolo Perrone.

Definition 30.2 Let C be a symmetric monoidal category. We define the data of a category
Leak(C) as follows

(i) objects are the objects of C

(ii) morphisms A ; X are equivalence classes [E, f] where E is an object and f : A →
X⊗ E is a morphism in C. We identify [E, f] with [E′, f ′] iff there exists an isomorphism
α : E→ E′ such that

f ′ = (idX ⊗ α) f (100)

We draw (representatives of) morphisms in Leak(C) using string diagrams in C where
wires into E are highlighted as leaking wires. The equivalence relation of depicted as follows

f

A

EX

f ′

A

EX

=

α

Morphisms can be composed as before while treating the environment as hidden.

199

Proposition 30.3 Leak(C) can be given the structure of a symmetric monoidal category as follows:

(i) Morphisms are composed and tensored as follows, while accumulating environments

f

f ′

Z E′ E

Y

X

f ′

X′

f

X

E′ EY′ Y

(ii) Morphisms f : X → Y in C give rise to morphisms in Leak(C) via

J(f)
def
= [I, X

f−→ Y ∼= Y⊗ I] : X ; Y

Identities and symmetric monoidal structure are inherited from C

Furthermore, if C has the structure of a CD category, so does Leak(C) and the assignment J : C →
Leak(C) gives rise to an identity-on-objects CD functor

PROOF Well-definedness of composition and tensor are easily verified; verifying coherence
in Leak(C) is tedious but straightforwardly reduces to C, because the J-construction intro-
duces no change in the environment up to coherence isomorphisms. The only interesting
part of the computation is the verification of the interchange law for Leak(C): The environ-
ments produced by (g⊗ g′) ◦ (f ⊗ f ′) and (g ◦ f)⊗ (g′ ◦ f ′) differ in the order of the middle
two wires. They get identified under (100) by applying the swap isomorphism, i.e.

f

g

Z F E

X

f

X

f ′

X′

E E′

g g′

F F′Z Z′

f ′

g′

F′ E′

X′

=

Z′

(101)
�

In the following, we take C to be a Markov category. Note that Leak(C) is not a Markov
category, because the unit I is not terminal: There are plenty of effects A ; I which return
no output but leak nontrivial information.

200

Because Leak(C) is a CD category, we have access to two types of string diagrams, rem-
iniscent of Figure 7: In Leak(C)-diagrams, the environments are completely hidden. Every
such diagram has a representative in C where environments are made visible as leaking
wires. Given f : A → X ⊗ E, its pseudo-marginal f(X) : A → X is defined as the equivalence
class [E, f]. Note that the environment E of a Leak-morphism can only be recovered up to
isomorphism; we only care about the information content that’s being leaked, while the in-
formation itself is being abstracted away.

Marginalization is a projection from Leak(C) back to C

Proposition 30.4 Marginalization gives rise to an identity-on-objects CD functor

Π : Leak(C)→ C, [E, f : A→ X⊗ E] 7→ fX

satisfying ΠJ = IdC. We have fX = Π(f(X)).

PROOF Marginalization is clearly well-defined, and all categorical operations after marginal-
ization are just those of C. �

We can now have a look at the dataflow axioms in terms of leaking: The deterministic
marginal property says that if a marginal X is deterministic, then it is independent from
whatever environment. This suggests that positivity is about strengthening the notion of de-
terminism from marginals to pseudo-marginals: That is, determinism remains valid even in
the presence of information leaks.

To make this precise, we will propose a weaker notion of determinism (called repeata-
bility) for CD categories which gives some leeway for unnormalized (non-discardable) mor-
phisms to still be considered deterministic.

Definition 30.5 A morphism f : A→ X in a CD category is called repeatable if

=f

A

f ff

A

XXX X

(102)

This notion simplifies to the usual definition of determinism whenever f is discardable, e.g.
in Markov categories.

Example 30.6 The scoring kernel in SfKer

score : R ; 1, score(r, 1) = r

is repeatable according to (102). However, it is neither copyable nor discardable, and the
effect score(a) : 1 ; 1 is copyable only if a ∈ {0, 1}.

201

In order to relate the positivity axiom to determinism under leaking, we first establish a
reformulation of the deterministic marginal property:

Lemma 30.7 For a Markov category C, the following are equivalent

(i) C is positive

(ii) for every f : A→ X⊗Y, if fX is deterministic then

= f

A

fff

A

Y YYY X X X X

(103)

PROOF (ii) implies the deterministic marginal property by marginalizing the first and third
wires from the left.

= f

A

fff

A

Y YYY X X X X

=ff

A

YX

= f

Y

A

X

202

On the other hand, if fX is deterministic and f = 〈 fX, fY〉 holds, we obtain

f

A

f

Y YX X

A

ff

=

ff

X X

A

f=

f
f f

X X
Y Y

Y

A

f

=

ff f

X X Y

Y

Y

=
ff

A

YY X X

�

The condition (103) is obtained by instantiating repeatability in the CD category Leak(C):
We arrive at the following result, which states that positivity lets us strength determinism
from marginals to pseudomarginals.

Proposition 30.8 (Determinism strengthening) Let C be a positive Markov category and f :
A → X ⊗ E a morphism in C. If the marginal fX : A → X is deterministic, then the pseudo-
marginal f(X) : A ; X in Leak(C) is repeatable.

PROOF Repeatability (Definition 30.5) instantiated for the morphism f(X) gives rise to the

203

following string diagram in C, where E is treated as a leaking wire

f

A

f

EX X

= f

A

f

E EX X E

Bringing the first E-wire to the left, this is precisely equation (103). �

The gist is that in positive Markov categories, determinism of a random variable can be
considered in isolation of its environment. If positivity fails, this is no longer possible. We
revisit the pathological example of a leaking name (Proposition 26.3).

Example 30.9 If we consider the joint distribution µ = let x ← new in [({x}, x)], then its
first marginal µ1 is deterministic, yet the pseudo-marginal µ(1) is not repeatable; because the
actual names get leaked into the environment, we can distinguish the two sides of (103).

We think that Proposition 30.8 should be an if-and-only-if characterization of positivity,
because determinism in the presence of leaking wires is exactly the notion (103). We can’t
formally prove this from our setup because of the quotienting by the isomorphisms in (100).
This should be a starting point for replacing the quotient by higher structure. We also conjec-
ture that Leak allows a similar characterization of causality (Section 9.2) related to the equiv-
alent notion of parameterized equality strengthening [Cho and Jacobs, 2019], which is about
strengthening µ-almost sure equality in the presence of leaking wires.

204

Chapter VI

Conclusion
We conclude by summarizing the contributions of the thesis and possibilities for future
work:

We have given an introduction to synthetic probability theory as a way of organizing
probabilistic thinking, abstracting away and comparing the underlying mathematical for-
malisms (Chapter I), and opening them up to generalizations. We believe that synthetic
reasoning provides powerful and elegant definitions, which enable greater conceptual in-
sight into probability theory and statistics (Chapter II). This is perhaps best exemplified in
our synthetic theory of conditioning (Chapter IV).

Mathematical theories shine in conjunction with a compelling formal language. For syn-
thetic probability theory, this is the language of string diagrams, which is already widely
applied in areas from physics to control theory. By showing that the internal language of CD
categories is the prototypical ground probabilistic programming language (Section 7), we
make a connection between synthetic probability theory and computer science: Probabilistic
programming languages not only have a mathematical foundation in categorical models of
probability, they also act as a convenient interface to the models themselves. The interplay
between language and model can inspire the addition of novel features such as the exact
conditioning construct (=:=) in Chapter IV. This all substantiates the main slogan from the
introduction that probabilistic programming languages should be thought of as the internal
languages of appropriate categorical models.

Commutative effects are abundant in computer science. We consider them to be of a
distinct flavor which makes them amenable to a probabilistic reading. This makes synthetic
probability theory a unifying language for various phenomena in computer science, such
as nondeterminism, name generation, logic programming, generativity and local state (Sec-
tion 5). We have seen that even phenomena like information hiding (Section 26) and garbage
collection (Section 30.2) admit a probabilistic discussion. Interesting examples which blend
probabilistic concepts and features of effectful programming are double distributions in hi-
erarchical models (Section 14) or memory as a source of nontrivial random higher-order
functions (Proposition 30.1).

In the main chapters of the thesis, we have have developed three synthetic accounts of
particular situations:

(i) We have studied the interaction of the Beta and Bernoulli distributions in an algebraic
fashion and proved our theory complete with respect to measure-theoretic semantics
(Theorem 12.10) as well as syntactically complete (Theorem 13.5).

(ii) We have developed a synthetic theory of conditioning kernels which allow measure-
zero observations (Section 19.2) and resolve Borel’s paradox in a type-theoretic fashion
(Section 22.1). We have used this to explore the addition of an exact conditioning op-
erator (=:=) to a language for Gaussian probability. We have established convenient
properties of exact conditioning in general (Section 19.3), given an algebraic axiomati-

205

zation of Gaussian probability with conditioning and shown a normal form result for
the effects in that language (Theorem 21.8).

(iii) We have interpreted name generation as an interesting instance of synthetic probability
(Section 25). We proceeded to show that name generation can be soundly interpreted
using random sampling, namely that quasi-Borel spaces form a semantic model of the
ν-calculus (Theorem 27.15). We used the connection with name generation to investi-
gate the behavior of random higher-order functions, which we prove exhibit the same
phenomena of Privacy and information hiding as name generation. Crucially, the a
random singleton set is indistinguishable from the empty set (Theorem 28.1). This has
a profound impact on the dataflow properties in higher-order probability and prevents
the existence of certain conditional distributions (Section 26) by a Privacy argument.
We extended the Privacy result to show that the quasi-Borel spaces model is fully ab-
stract for the ν-calculus up to first-order types (Theorem 29.10). The proof requires
a novel normalization procedure for the first-order terms, which identifies and elimi-
nates private names.

Recurring themes of this thesis are the relation between generativity and probability, ab-
stract types, presheaves, second-order algebraic theories, normal forms and the study of in-
formation leaks. The methods exemplified in the main chapters can be seen as general tools
of presenting synthetic probability theories, such as the Cond construction (Section 19.2) or
the categories in Section 14 and proposition 25.19.

The thesis contains many starting points for future work, found in the conclusions of the
individual chapters and in the ‘outlook’ sections scattered across the thesis. We summarize
some points here:

It would be interesting to elaborate on probabilistic models of local state (Section 30.2),
as well as develop a categorical account of Privacy and information leaking (Section 30.5).

Section 20 suggests a connection between Frobenius algebras, exact conditioning and
PROLOG-style logic programming. A logical next step to Section 21.2 would be to extend
the category Gauss with synthetic improper priors which act as Frobenius unit for condi-
tioning (Section 20.2), or prove that such an extension is impossible. By compact closure,
the extension would lead to an improved characterization of Theorem 21.10, because ef-
fects and states are put in bijective correspondence. Another area of research is to ex-
tend the Cond-construction to branching programs, which are known to have subtle in-
teractions with conditioning [Jacobs, 2021b]. There is an ongoing search to find large but
well-behaved Markov categories, for example a well-behaved Markov category of measur-
able spaces [Fritz, 2020, Conjecture 11.10] or one that has ‘Kolmogorov products’ [Fritz and
Rischel, 2020, Problem 6.7] or conditionals and representable supports (Section 8.3). Another
direction would be to find smaller categories with a more combinatorial flavor, for example
extending BetaBern to deeper hierarchical processes (Section 15).

206

References

Abadi, M. and Plotkin, G. D. (2012). On protection by layout randomization. ACM
Trans. Inf. Syst. Secur., 15(2).

Abelson, H., Sussman, G. J., and with Julie Sussman (1996). Structure and Interpretation of
Computer Programs. MIT Press/McGraw-Hill, Cambridge, 2nd edition.

Abramsky, S., Ghica, D. R., Murawski, A. S., Ong, C.-H. L., and Stark, I. D. B. (2004). Nom-
inal games and full abstraction for the nu-calculus. In Proceedings of the 19th Annual IEEE
Symposium on Logic in Computer Science, LICS ’04, pages 150 – 159, USA. IEEE Computer
Society.

Ackerman, N. L., Freer, C. E., and Roy, D. M. (2016a). Exchangeable random primitives.
Workshop on Probabilistic Programming Semantics (PPS 2016).

Ackerman, N. L., Freer, C. E., and Roy, D. M. (2016b). On computability and disintegration.
Math. Struct. Comput. Sci., 27(8).

Adams, R. (2009). Lambda free logical frameworks. Ann. Pure. Appl. Logic. to appear.

Ahman, D. and Staton, S. (2013). Normalization by evaluation and algebraic effects. In
Proc. MFPS 2013, volume 298 of Electron. Notes Theor. Comput. Sci, pages 51–69.

Alves Diniz, M., Salasar, L. E., and Bassi Stern, R. (2016). Positive polynomials on closed
boxes. arXiv e-print 1610.01437.

Antoy, S. and Hanus, M. (2010). Functional logic programming. Commun. ACM, 53(4):74–85.

Aumann, R. J. (1961). Borel structures for function spaces. Illinois Journal of Mathematics, 5.

Bacci, G., Furber, R., Kozen, D., Mardare, R., Panangaden, P., and Scott, D. (2018). Boolean-
valued semantics for stochastic lambda-calculus. In Proc. LICS 2018.

Baez, J. and Hoffnung, A. (2008). Convenient categories of smooth spaces. Transactions of the
American Mathematical Society, 363.

Baez, J. C., Coya, B., and Rebro, F. (2018). Props in network theory.

Baez, J. C. and Erbele, J. (2015). Categories in control. Theory Appl. Categ., 30:836–881.

Bauer, A. and Pretnar, M. (2015). Programming with algebraic effects and handlers. Journal
of Logical and Algebraic Methods in Programming, 84(1):108–123.

Bell, J. L. (2012). Types, sets, and categories. Handbook of the History of Logic, 6.

Benton, N. and Koutavas, V. (2008). A mechanized bisimulation for the nu-calculus. Techni-
cal Report MSR-TR-2008-129, Microsoft Research.

Bingham, E., Chen, J. P., Jankowiak, M., Obermeyer, F., Pradhan, N., Karaletsos, T., Singh,
R., Szerlip, P., Horsfall, P., and Goodman, N. D. (2018). Pyro: Deep Universal Probabilistic
Programming. Journal of Machine Learning Research.

207

Bizjak, A. and Birkedal, L. (2015). Step-indexed logical relations for probability. In Proc. FOS-
SACS 2015, pages 279–294.

Bonchi, F., Piedeleu, R., Sobocinski, P., and Zanasi, F. (2019). Graphical affine algebra. In
Proc. LICS 2019.

Bonchi, F., Sobocinski, P., and Zanasi, F. (2017). The calculus of signal flow diagrams I: linear
relations on streams. Inform. Comput., 252.

Borgström, J., Dal Lago, U., Gordon, A. D., and Szymczak, M. (2016). A lambda-calculus
foundation for universal probabilistic programming. SIGPLAN Not., 51(9):33–46.

Breugel, F. (2005). The metric monad for probabilistic nondeterminism. unpublished (arXiv).

Carboni, A., Lack, S., and Walters, R. (1993). Introduction to extensive and distributive
categories. Journal of Pure and Applied Algebra, 84(2):145–158.

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., Brubaker,
M., Guo, J., Li, P., and Riddell, A. (2017). Stan: A probabilistic programming language.
Journal of statistical software, 76(1).

Cho, K. and Jacobs, B. (2019). Disintegration and Bayesian inversion via string diagrams.
Mathematical Structures in Computer Science, 29:938 – 971.

Clarke, B., Elkins, D., Gibbons, J., Loregian, F., Milewski, B., Pillmore, E., and Roman, M.
(2020). Profunctor optics, a categorical update. arxiv:2001.07488.

Coecke, B. and Spekkens, R. W. (2012). Picturing classical and quantum Bayesian inference.
Synthese, 186(3):651–696.

Cusumano-Towner, M. F., Saad, F. A., Lew, A. K., and Mansinghka, V. K. (2019). Gen: A
general-purpose probabilistic programming system with programmable inference. In Pro-
ceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI 2019, pages 221–236. ACM.

Dahlqvist, F. and Kozen, D. (2020). Semantics of higher-order probabilistic programs with
conditioning. In Proc. POPL 2020.

Dal Lago, U. and Hoshino, N. (2019). The geometry of Bayesian programming. In Proc. LICS
2019.

Dash, S. and Staton, S. (2020). A monad for probabilistic point processes. In ACT.

Dash, S. and Staton, S. (2021). Monads for measurable queries in probabilistic databases. In
To Appear in Proceedings of Mathematical Foundations of Programming Semantics (MFPS).

De Raedt, L. and Kimming, A. (2015). Probabilistic (logic) programming concepts.
Mach. Learn., 100.

Doberkat, E. (2004). Characterizing the Eilenberg-Moore algebras for a monad of stochastic
relations. Information and Computation.

208

Ehrhard, T., Pagani, M., and Tasson, C. (2018). Measurable cones and stable, measurable
functions. In Proc. POPL 2018.

Ehrhard, T., Tasson, C., and Pagani, M. (2014). Probabilistic coherence spaces are fully ab-
stract for probabilistic PCF. In Proc. POPL 2014, pages 309–320.

Escardo, M. (2009). Semi-decidability of May, Must and probabilistic testing in a higher-type
setting. In Proc. MFPS 2009.

Farouki, R. T. (2012). The Bernstein polynomial basis: A centennial retrospective. Computer
Aided Geometric Design, 29(6):379–419.

Feynman, R. P. (1987). Negative probability. In Hiley, B. J. and Peat, D., editors, Quantum
Implications: Essays in Honour of David Bohm, pages 235–248. Methuen.

Fiore, M. and Hur, C.-K. (2010). Second-order equational logic (extended abstract). In
Dawar, A. and Veith, H., editors, Computer Science Logic, pages 320–335, Berlin, Heidel-
berg. Springer Berlin Heidelberg.

Fiore, M. and Mahmoud, O. (2010). Second-order algebraic theories. In Mathematical Foun-
dations of Computer Science 2010, Berlin, Heidelberg. Springer Berlin Heidelberg.

Fong, B. (2012). Causal Theories: A Categorical Perspective on Bayesian Networks (MSc thesis).
PhD thesis, University of Oxford.

Fritz, T. (2020). A synthetic approach to Markov kernels, conditional independence and
theorems on sufficient statistics. Adv. Math., 370.

Fritz, T., Gonda, T., and Perrone, P. (2021). De Finetti’s theorem in categorical probability.

Fritz, T., Gonda, T., Perrone, P., and Rischel, E. F. (2020). Representable Markov categories
and comparison of statistical experiments in categorical probability.

Fritz, T. and Perrone, P. (2017). A probability monad as the colimit of spaces of finite samples.
arXiv: Probability.

Fritz, T., Perrone, P., and Rezagholi, S. (2019). Probability, valuations, hyperspace: Three
monads on top and the support as a morphism. ArXiv, abs/1910.03752.

Fritz, T. and Rischel, E. F. (2020). Infinite products and zero-one laws in categorical proba-
bility. Compositionality, 2.

Führmann, C. (2002). Varieties of effects. In Proc. FOSSACS 2002, pages 144–159.

Furber, R. and Jacobs, B. (2015). From Kleisli categories to commutative C*-algebras: Proba-
bilistic Gelfand duality. Log. Methods Comput. Sci., 11(2).

Gehr, T., Misailovic, S., and Vechev, M. (2016). PSI: Exact symbolic inference for probabilistic
programs. In Proc. CAV 2016.

Gehr, T., Steffen, S., and Vechev, M. T. (2020). λPSI: exact inference for higher-order proba-
bilistic programs. In Proc. PLDI 2020.

209

Goldblatt, R. (2006). Topoi: The Categorical Analysis of Logic. Dover Publications.

Goodman, N. D., Mansinghka, V. K., Roy, D., Bonawitz, K., and Tenenbaum, J. B. (2008).
Church: A language for generative models. In Proceedings of the Twenty-Fourth Conference
on Uncertainty in Artificial Intelligence, UAI’08, pages 220 – 229, Arlington, Virginia, USA.
AUAI Press.

Goodman, N. D. and Stuhlmüller, A. (2014). The Design and Implementation of Probabilistic
Programming Languages. http://dippl.org. Accessed: 2021-8-3.

Goodman, N. D., Tenenbaum, J. B., and Contributors, T. P. (2016). Probabilistic Models of
Cognition. http://probmods.org. Accessed: 2021-3-26.

Gromov, M. (2014). Six lectures on probabiliy, symmetry, linearity.

Hanus, M., Kuchen, H., Aachen, R., and Ii, I. (2000). Curry: A truly functional logic language.

Hermida, C. and Tennent, R. D. (2012). Monoidal indeterminates and categories of possible
worlds. Theoret. Comput. Sci., 430.

Heunen, C. and Kaarsgaard, R. (2021). Bennett and Stinespring, together at last. In Proceed-
ings of the 18th International Conference on Quantum Physics and Logic (QPL 2021), number
343 in Electronic Proceedings in Theoretical Computer Science, pages 102–118. EPTCS.

Heunen, C., Kammar, O., Staton, S., Moss, S., Vákár, M., Ścibior, A., and Yang, H. (2018). The
semantic structure of quasi-Borel spaces. https://pps2018.luddy.indiana.edu/
files/2018/01/pps18-qbs-semantic-structure.pdf.

Heunen, C., Kammar, O., Staton, S., and Yang, H. (2017). A convenient category for higher-
order probability theory. In Proceedings of the 32nd Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS ’17. IEEE Press.

Heunen, C. and Vicary, J. (2019). Categories for quantum theory: an introduction. Oxford Uni-
versity Press, United Kingdom.

Houghton-Larsen, N. G. (2021). A Mathematical Framework for Causally Structured Dilations
and its Relation to Quantum Self-Testing. PhD thesis, University of Copenhagen.

Huang, D., Morrisett, G., and Spitters, B. (2018). An application of computable distributions
to the semantics of probabilistic programs. arxiv:1806.07966.

Huot, M. and Staton, S. (2018). Universal properties in quantum theory. In Proc. QPL 2018.

Huot, M., Staton, S., and Vákár, M. (2020). Correctness of automatic differentiation via dif-
feologies and categorical gluing. In Foundations of Software Science and Computation Struc-
tures, pages 319–338, Cham. Springer International Publishing.

Hyland, M. and Power, J. (2007). The category theoretic understanding of universal algebra:
Lawvere theories and monads. Electronic Notes in Theoretical Computer Science, 172:437–458.

210

http://dippl.org
http://probmods.org
https://pps2018.luddy.indiana.edu/files/2018/01/pps18-qbs-semantic-structure.pdf
https://pps2018.luddy.indiana.edu/files/2018/01/pps18-qbs-semantic-structure.pdf

Jacobs, B. (2016). Affine monads and side-effect-freeness. In Coalgebraic Methods in Computer
Science, pages 53–72, Cham. Springer International Publishing.

Jacobs, B. (2020). A channel-based perspective on conjugate priors. Mathematical Structures
in Computer Science, 30(1):44–61.

Jacobs, B. (2021a). From multisets over distributions to distributions over multisets. In
Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 21),
pages 1–13.

Jacobs, B. and Staton, S. (2020). De Finetti’s construction as a categorical limit. In To ap-
pear In 15th International Workshop on Coalgebraic Methods in Computer Science. Preprint
arxiv:2003.01964.

Jacobs, J. (2021b). Paradoxes of probabilistic programming. In Proc. POPL 2021.

Janson, S., Konstantopoulos, T., and Yuan, L. (2016). On a representation theorem for finitely
exchangeable random vectors. Journal of Mathematical Analysis and Applications, 442(2):703–
714.

Jaynes, E. T. (2003). Probability Theory: The Logic of Science. CUP.

Jeffrey, A. (1998). Premonoidal categories and a graphical view of programs.

Jeffrey, A. and Rathke, J. (1999). Towards a theory of bisimulation for local names. In
Proc. LICS 1999.

Johann, P., Simpson, A., and Voigtländer, J. (2010). A generic operational metatheory for
algebraic effects. In Proc. LICS 2010, pages 209–218.

Joyal, A. and Street, R. (1991). The geometry of tensor calculus, i. Advances in Mathematics,
88:55–112.

Joyal, A. and Street, R. (1993). Braided tensor categories. Advances in Mathematics, 102(1):20–
78.

Kallenberg, O. (1997). Foundations of Modern Probability. Springer, New York.

Kammar, O. and Plotkin, G. D. (2012). Algebraic foundations for effect-dependent optimisa-
tions. In Proc. POPL 2012, pages 349–360.

Kechris, A. (1987). Classical Descriptive Set Theory. Springer.

Kinoshita, Y. and Power, J. (1996). A fibrational semantics for logic programs. In Proc. ELP
1996.

Kiselyov, O. and Shan, C.-C. (2010). Probabilistic programming using first-class stores and
first-class continuations. In Proc. 2010 ACM SIGPLAN Workshop on ML.

Kock, A. (1972). Strong functors and monoidal monads. Archiv der Mathematik, 23:113–120.

211

Kock, A. (2011). Commutative monads as a theory of distributions. Theory and Applications
of Categories, 26.

Kotzmann, T. and Mossenbock, H. (2007). Run-time support for optimizations based on
escape analysis. In International Symposium on Code Generation and Optimization (CGO’07),
pages 49–60.

Kozen, D. (1981). Semantics of probabilistic programs. Journal of Computer and System Sci-
ences, 22(3):328–350.

Lago, U. D. and Gavazzo, F. (2019). On bisimilarity in lambda calculi with continuous proba-
bilistic choice. Electronic Notes in Theoretical Computer Science, 347:121 – 141. Proceedings of
the Thirty-Fifth Conference on the Mathematical Foundations of Programming Semantics.

Laird, J. (2004). A game semantics of local names and good variables. In Proc. FOSSACS
2004, pages 289–303.

Lauritzen, S. and Jensen, F. (1999). Stable local computation with conditional Gaussian dis-
tributions. Statistics and Computing, 11.

Lawvere, F. W. (1963). Functorial semantics of algebraic theories. Proceedings of the National
Academy of Sciences, 50(5):869–872.

Leijen, D. (2014). Koka: Programming with row polymorphic effect types. Electronic Proceed-
ings in Theoretical Computer Science, 153.

Levy, P. B., Power, J., and Thielecke, H. (2003). Modelling environments in call-by-value
programming languages. Information and Computation, 185(2):182–210.

Lew, A. K., Cusumano-Towner, M. F., Sherman, B., Carbin, M., and Mansinghka, V. K. (2019).
Trace types and denotational semantics for sound programmable inference in probabilistic
languages. Proc. ACM Program. Lang., 4(POPL).

Linton, F. E. J. (1966). Autonomous equational categories. J. Math. Mech., 15:637–642.

Lunn, D., Thomas, A., Best, N., and Spiegelhalter, D. (2000). Winbugs — a Bayesian mod-
elling framework: concepts, structure, and extensibility. Statistics and Computing, 10.

MacLane, S. (1971). Categories for the Working Mathematician. Springer-Verlag. Graduate Texts
in Mathematics, Vol. 5.

Mansinghka, V., Selsam, D., and Perov, Y. (2014). Venture: a higher-order probabilistic pro-
gramming platform with programmable inference. arXiv e-print 1404.0099.

Milner, R. (1999). Communicating and mobile systems - the Pi-calculus. CUP.

Milner, R., Parrow, J., and Walker, D. (1992). A calculus of mobile processes, I. Inform. Com-
put., 100(1).

Minka, T., Winn, J., Guiver, J., Zaykov, Y., Fabian, D., and Bronskill, J. (2018). Infer.NET 0.3.
Microsoft Research Cambridge.

212

Møgelberg, R. and Staton, S. (2014). Linear usage of state. Logical Methods in Computer Science
[electronic only], 10.

Moggi, E. (1989). Computational lambda-calculus and monads. In Proceedings of the Fourth
Annual Symposium on Logic in Computer Science, page 14–23. IEEE Press.

Moggi, E. (1991). Notions of computation and monads. Information and Computation, 93(1):55
– 92. Selections from 1989 IEEE Symposium on Logic in Computer Science.

Murawski, A. S. and Tzevelekos, N. (2016). Nominal game semantics. Found. Trends Program.
Lang.

Murray, L., Lundén, D., Kudlicka, J., Broman, D., and Schön, T. (2018). Delayed sampling
and automatic Rao-Blackwellization of probabilistic programs. In Proceedings of the Twenty-
First International Conference on Artificial Intelligence and Statistics, pages 1037–1046.

Murray, L. M. and Schön, T. B. (2018). Automated learning with a probabilistic programming
language: Birch. Annual Reviews in Control, 46:29 – 43.

Narayanan, P., Carette, J., Romano, W., Shan, C., and Zinkov, R. (2016). Probabilistic infer-
ence by program transformation in Hakaru (system description). In Proc. FLOPS 2016,
pages 62–79.

Narayanan, P. and Shan, C. (2019). Applications of a disintegration transformation. In Work-
shop on program transformations for machine learning.

Neumann, W. D. (1970). On the quasivariety of convex subsets of affine space. Arch. Math.,
21:11–16.

Nori, A., Hur, C.-K., Rajamani, S., and Samuel, S. (2014). R2: An efficient MCMC sampler
for probabilistic programs. In Proc. AAAI 2014.

Odersky, M. (1994). A functional theory of local names. In Proceedings of the 21st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’94, pages 48
– 59, New York, NY, USA. Association for Computing Machinery.

Orbanz, P. and Roy, D. M. (2015). Bayesian models of graphs, arrays and other exchangeable
random structures. IEEE Trans. Pattern Anal. Mach. Intell., pages 437–461.

Panangaden, P. (2016). Analysis of probabilistic systems. https://simons.berkeley.
edu/talks/analysis-of-probabilistic-systems. Talk series at Logical Struc-
tures in Computation Boot Camp, Simons Institute.

Paquet, H. and Winskel, G. (2018). Continuous probability distributions in concurrent
games. In Proc. MFPS 2018, pages 321–344.

Parzygnat, A. J. (2020). Inverses, disintegrations, and Bayesian inversion in quantum
Markov categories. arXiv: Quantum Physics.

Pitts, A. M. (2013a). Names and symmetry in Computer science. CUP.

213

https://simons.berkeley.edu/talks/analysis-of-probabilistic-systems
https://simons.berkeley.edu/talks/analysis-of-probabilistic-systems

Pitts, A. M. (2013b). Nominal Sets: Names and Symmetry in Computer Science. Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press.

Pitts, A. M. and Stark, I. (1993). Observable properties of higher order functions that dynam-
ically create local names, or: What’s new? In Mathematical Foundations of Computer Science:
Proceedings of the 18th International Symposium MFCS ’93, number 711 in Lecture Notes in
Computer Science, pages 122–141. Springer-Verlag.

Plotkin, G. and Power, J. (2003). Algebraic operations and generic effects. Applied Categorical
Structures, 11:69–94.

Plotkin, G. D. (1973). Lambda-definability and logical relations. Technical Report SAI-RM-4,
School of A.I., Univ.of Edinburgh.

Plummer, M. (2003). Jags: A program for analysis of Bayesian graphical models using gibbs
sampling.

Power, J. and Robinson, E. (1997). Premonoidal categories and notions of computation. Math.
Struct. Comput. Sci., 7:453–468.

Powers, V. and Reznick, B. (2000). Polynomials that are positive on an interval. Trans. Amer.
Math. Soc., 352(10):4677–4692.

Pretnar, M. (2010). The Logic and Handling of Algebraic Effects. PhD thesis, Univ. Edinburgh.

Proschan, M. A. and Presnell, B. (1998). Expect the unexpected from conditional expectation.
The American Statistician, 52(3).

Rainforth, T. (2017). Automatic Inference, Learning, and Design using Probabilistic Programming.
PhD thesis, University of Oxford.

Romanowska, A. B. and Smith, J. D. H. (2002). Modes. World Scientific.

Roy, D., Mansinghka, V., Goodman, N., and Tenenbaum, J. (2008). A stochastic programming
perspective on nonparametric bayes. In Proc. ICML Workshop on Nonparametric Bayes.

Russell, S. J. and Milch, B. (2006). Probabilistic models with unknown objects.

Sabok, M., Staton, S., Stein, D., and Wolman, M. (2021). Probabilistic programming semantics
for name generation. In Proceedings of the ACM on Programming Languages vol 5 (POPL 21).

Sato, T., Aguirre, A., Barthe, G., Gaboardi, M., Garg, D., and Hsu, J. (2019). Formal veri-
fication of higher-order probabilistic programs: Reasoning about approximation, conver-
gence, Bayesian inference, and optimization. Proc. ACM Program. Lang., 3(POPL).

Schervish, M. J. (1995). Theory of statistics. Springer.

Ścibior, A., Kammar, O., Vákár, M., Staton, S., Yang, H., Cai, Y., Ostermann, K., Moss, S.,
Heunen, C., and Ghahramani, Z. (2017). Denotational validation of higher-order Bayesian
inference. Proceedings of the ACM on Programming Languages, 2.

214

Selinger, P. (2011). A Survey of Graphical Languages for Monoidal Categories, pages 289–355.
Springer Berlin Heidelberg, Berlin, Heidelberg.

Shan, C.-c. and Ramsey, N. (2017). Exact Bayesian inference by symbolic disintegration. In
Proc. POPL 2017.

Shinwell, M. R. and Pitts, A. (2005). Fresh objective caml user manual. https://www.cl.
cam.ac.uk/techreports/UCAM-CL-TR-621.pdf.

Simpson, A. (2017). Probability sheaves and the Giry monad. In Proc. CALCO 2017.

Somogyi, Z., Henderson, F., and Conway, T. (1996). The execution algorithm of mercury, an
efficient purely declarative logic programming language. The Journal of Logic Programming,
29(1):17–64. High-Performance Implementations of Logic Programming Systems.

Srivastava, S. M. (1998). A Course on Borel Sets. Springer, New York.

St Clere Smithe, T. (2020). Bayesian updates compose optically.

Stark, I. (1994). Names and Higher-Order Functions. PhD thesis, University of Cambridge.
Also available as Technical Report 363, University of Cambridge Computer Laboratory.

Stark, I. (1996). Categorical models for local names. LISP and Symbolic Computation, 9(1):77–
107.

Staton, S. (2010). Completeness for algebraic theories of local state. In Ong, L., editor, Foun-
dations of Software Science and Computational Structures, pages 48–63, Berlin, Heidelberg.
Springer Berlin Heidelberg.

Staton, S. (2013a). An algebraic presentation of predicate logic. In Pfenning, F., editor, Foun-
dations of Software Science and Computation Structures, pages 401–417, Berlin, Heidelberg.
Springer Berlin Heidelberg.

Staton, S. (2013b). Instances of computational effects. In Proc. LICS 2013.

Staton, S. (2013c). Instances of computational effects: An algebraic perspective. In Proceedings
of the 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’13, page
519, USA. IEEE Computer Society.

Staton, S. (2014). Freyd categories are enriched lawvere theories. Electronic Notes in Theoretical
Computer Science, 303:197–206.

Staton, S. (2015). Algebraic effects, linearity, and quantum programming languages. SIG-
PLAN Not., 50(1):395–406.

Staton, S. (2017). Commutative semantics for probabilistic programming. In Yang, H., editor,
Programming Languages and Systems, pages 855–879, Berlin, Heidelberg. Springer Berlin
Heidelberg.

215

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-621.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-621.pdf

Staton, S., Shulman, M., and Baez, J. (2017a). Describing props using generators and
relations. https://golem.ph.utexas.edu/category/2014/07/describing_
props_using_generat.html#c052012.

Staton, S., Stein, D., Yang, H., Ackerman, N., Freer, C., and Roy, D. (2018). The beta-bernoulli
process and algebraic effects. Proceedings of 45th International Colloquium on Automata, Lan-
guages and Programming (ICALP ’18).

Staton, S., Yang, H., Ackerman, N., Freer, C., and Roy, D. M. (2017b). Exchangeable random
processes and data abstraction. Workshop on Probabilistic Programming Semantics (PPS
2017).

Staton, S., Yang, H., Wood, F., Heunen, C., and Kammar, O. (2016). Semantics for probabilis-
tic programming: Higher-order functions, continuous distributions, and soft constraints.
In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS
’16, pages 525 – 534, New York, NY, USA. Association for Computing Machinery.

Stay, M. and Vicary, J. (2013). Bicategorical semantics for nondeterministic computation.
Electronic Notes in Theoretical Computer Science, 298.

Stein, D. (2021). GaussianInfer. https://github.com/damast93/GaussianInfer.

Stein, D. and Staton, S. (2021). Compositional semantics for probabilistic programs with ex-
act conditioning (long version). In Proceedings of Thirty-Sixth Annual ACM/IEEE Conference
on Logic in Computer Science (LICS 2021).

Stone, M. H. (1949). Postulates for the barycentric calculus. Ann. Mat. Pura Appl. (4), 29:25–
30.

Sumii, E. and Pierce, B. C. (2003). Logical relations for encryption. J. Comput. Secur.,
11(4):521–554.

Tao, T. (2010). 254a, notes 0: A review of probability the-
ory. https://terrytao.wordpress.com/2010/01/01/
254a-notes-0-a-review-of-probability-theory/. Accessed: 2021-8-03.

Teh, Y. W., Jordan, M. I., Beal, M. J., and Blei, D. M. (2006). Hierarchical Dirichlet processes.
J. Amer. Statist. Assoc., 101(476):1566–1581.

Tijms, H. (2007). Negative probabilities at work in the m/d/1 queue. Probability in the
Engineering and Informational Sciences, 21:67 – 76.

Tolpin, D., van de Meent, J.-W., Yang, H., and Wood, F. (2016). Design and implementation of
probabilistic programming language anglican. In Proceedings of the 28th Symposium on the
Implementation and Application of Functional Programming Languages, IFL 2016, New York,
NY, USA. Association for Computing Machinery.

Tsirelson, B. (2012). Measurability and continuity (course).

Tzevelekos, N. (2008a). Nominal Game Semantics. PhD thesis, University of Oxford.

216

https://golem.ph.utexas.edu/category/2014/07/describing_props_using_generat.html#c052012
https://golem.ph.utexas.edu/category/2014/07/describing_props_using_generat.html#c052012
https://github.com/damast93/GaussianInfer
https://terrytao.wordpress.com/2010/01/01/254a-notes-0-a-review-of-probability-theory/
https://terrytao.wordpress.com/2010/01/01/254a-notes-0-a-review-of-probability-theory/

Tzevelekos, N. (2008b). Nominal game semantics. PhD thesis, Oxford University Computing
Laboratory.

Vákár, M., Kammar, O., and Staton, S. (2019). A domain theory for statistical probabilistic
programming. Proceedings of the ACM on Programming Languages vol 3 (POPL 19).

van de Meent, J.-W., Paige, B., Yang, H., and Wood, F. (2018). An introduction to probabilistic
programming.

Vandenbroucke, A. and Schrijvers, T. (2020). PλωNK: functional probabilistic NetKAT. In
Proc. POPL 2020.

von Neumann, J. (1951). Various techniques used in connection with random digits. Nat.
Bur. Stand. Appl. Math. Series, 12:36–38.

Walia, R., Narayanan, P., Carette, J., Tobin-Hochstadt, S., and Shan, C.-c. (2019). From high-
level inference algorithms to efficient code. Proc. ACM Program. Lang., 3(ICFP).

Wu, J. (2013). Reduced traces and JITing in Church. Master’s thesis, Mass. Inst. of Tech.

Zhang, Y. and Nowak, D. (2003). Logical relations for dynamic name creation. In Proc. CSL
2003, pages 575–588.

217

Chapter VII

Appendix

31 Appendix to Chapter II

We verify the remaining axioms of the CD calculus.

PROOF (OF PROPOSITION 7.5) (let.ξ) follows from the compositionality of the semantics.
(∗.β), (∗.η) and (unit.η) are are immediate. We proceed to prove that (let.lin) is valid, that
is if t uses x exactly once, then

e

t

= t[e!x]

ΓΓ

We argue by induction over the term structure of t.

Variable If t = x, then

e

x

= e = e = x[e!x]

Pairing Let t = (u, s) where wlog x occurs freely exactly once in u and zero times in s. By
inductive hypothesis, we have (let x = e in u) = u[e!x], i.e.

e

u

= u[e!x]

218

from which we derive by the comonoid laws and weakening of s

e =

u s

=let x = e in (u, s)

e

u

s
=

u[e!x] s
= (u[e!x], s)

The case for (s, u) is symmetric.

Function application If t = f u we obtain immediately from the inductive hypothesis

=let x = e in f u = (f u)[e!x]e

u

f

= u[e!x]

f

The proof for the projection case t = πi u is analogous.

Let-binding I Let t = (let y = u in s) with u, s as before then

(let x = e in let y = u in s) ≡ (let y = (let x = e in u) in s) ≡ (let y = u[e!x] in s)

is a special case of (assoc) which was proved in (36).

Let-binding II Let t = (let y = s in u), then

(let x = e in let y = s in u) ≡ (let y = s in let x = e in u) ≡ (let y = s in u[e!x])

is a special case of (comm). The inductive hypothesis on u involves both weakening and
exchange and reads

=u[e!x] e

u

219

from which we derive

=let x = e in let y = s in u e =

s

u

s let y = s in u[e!x]

e

u

=

This finishes the validation for linear substitution.

For (let.val), we carry out the semantic analogue of Proposition 7.3 and consider se-
quences of let-bindings

let x1 = e in · · · let xn = e in t̂

whose denotation is

e e

Γ

e
t̂

. . .

This can be replaced by let x = e in let x1 = x in · · · let xn = x in t̂, i.e.

Γ

t̂

. . .

e

whenever the denotation of e is deterministic in the CD category sense. It remains to note
that the denotations of all values of the CD calculus are always deterministic. �

220

32 Appendix to Chapter III

32.1 Example derivations

In this appendix, we give explicit derivations of some equations mentioned in Chapter III.
The first equation, as found in Section 11.3, is

x +1:1 y = ((x +1:1 y) ?p x) ?p(y ?p(x +1:1 y))

which is called von Neumann’s trick. Here is the derivation of this equation:

((x +1:1 y) ?p x) ?p(y ?p(x +1:1 y)) = ((x +1:1 y) ?p(x +1:1 x)) ?p((y +1:1 y) ?p(x +1:1 y))

= ((x ?p x) +1:1 (y ?p x)) ?p((y ?p x) +1:1 (y ?p y))

= ((y ?p x) +1:1 (x ?p x)) ?p((y ?p x) +1:1 (y ?p y))

= ((y ?p x) ?p(y ?p x)) +1:1 ((x ?p x) ?p(y ?p y))

= (y ?p x) +1:1 (x ?p y)

= (y +1:1 x) ?p(x +1:1 y)

= (x +1:1 y) ?p(x +1:1 y)

= (x +1:1 y).

Using normal forms, we can in fact easily see that x +1:1 y is the only normalized term
(− | x, y ` t) that satisfies t = (t ?p x) ?p(y ?p t). Making (t ?p x) ?p(y ?p t) permutation-
invariant means computing the average

(t ?p x) ?p(y ?p t) = ((t ?p x) ?p(y ?p t)) +1:1 ((t ?p y) ?p(x ?p t))

= ((t +1:1 t) ?p(x +1:1 y)) ?p((x +1:1 y) ?p(t +1:1 t))

= (t ?p(x +1:1 y)) ?p((x +1:1 y) ?p t) = C2(t, x +1:1 y, t)

whereas by discardability, the permutation-invariant form of t is simply C2(t, t, t). As these
are normal forms, we can read off that t = x +1:1 y is the only fixed point.

The following derivations show the normalization procedure being applied to the pro-
grams from Example 13.6:

ν1,1 p.((y ?p z) ?p z)

= (ν2,1 p.(y ?p z)) +1:1 (ν1,2 p.z)

= (y +2:1 z) +1:1 z

= (y +2:1 z) +3:3 (y +0:3 z)

= (y +2:0 y) +2:4 (z +1:3 z)

= y +2:4 z

= y +1:2 z.

ν1,1 p.ν1,1q.((y ?q z) ?p z)

= ν1,1 p.((ν1,1q.(y ?q z)) ?p(ν1,1q.z))

= ν1,1 p.((y +1:1 z) ?p z)

= (y +1:1 z) +1:1 z

= (y +1:1 z) +2:2 (y +0:2 z)

= (y +1:0 y) +1:3 (z +1:2 z)

= y +1:3 z.

221

32.2 Allowing zero hyperparameters

In term formation, we have excluded zero hyperparameters νi,0 and ν0,i. This is because βi,0
and β0,i are not absolutely continuous distributions on I, but Dirac peaks on 1 and 0 respec-
tively. This makes the geometric reasoning about the dimension of chains more complicated.
For example, the equation

ν1,0 p.x(p, p) = ν1,0 p.ν1,0q.x(p, q)

holds in the model because Dirac distributions are deterministic. Yet our axioms cannot
derive this equality, as it treats both sides as degenerate chains of distinct types! We suggest
introducing new constant symbols 0 and 1 alongside axioms

` ν1,0 p.x(p) = x(1) ` ν0,1 p.x(p) = x(0)

to solve the problem. This restores the well-defined notion of dimension of chains and allows
us to derive

` ν1,0 p.x(p, p) = x(1, 1) = ν1,0 p.ν1,0q.x(p, q)

as desired.

222

33 Appendix to Chapter IV

33.1 Linear Algebra

The following facts from linear algebra are useful to recall and get used throughout.

Proposition 33.1 Let A ∈ Rm×n, then there are invertible matrices S, T such that

SAT−1 =

(
Ir 0
0 0

)
where r = rank(A). Furthermore, T can taken to be orthogonal.

PROOF Take a singular-value decomposition (SVD) A = UDVT, let T = V and use create S
from UT by rescaling the appropriate columns. �

Proposition 33.2 (Row equivalence) Two matrices A, B ∈ Rm×n are called row equivalent if
the following equivalent conditions hold

(i) for all x ∈ Rn, Ax = 0⇔ Bx = 0

(ii) A and B have the same row space

(iii) there is an invertible matrix S such that A = SB

Unique representatives of row equivalence classes are matrices in reduced row echelon form.

Corollary 33.3 Let A, B ∈ Rm×n and let Ax = c and Bx = d be consistent systems of linear
equations that have the same solution space. There is an invertible matrix S such that B = SA and
d = Sc.

Proposition 33.4 (Column equivalence) For matrices A, B ∈ Rm×n, the following are equiva-
lent

(i) A and B have the same column space

(ii) there is an invertible matrix T such that A = BT.

Proposition 33.5 For matrices A, B ∈ Rm×n, the following are equivalent

(i) AAT = BBT

(ii) there is an orthogonal matrix U such that A = BU.

PROOF This is a known fact, but we sketch a proof for lack of reference. In the construction
of the SVD A = UDVT, we can choose U and D depending on AAT alone. It follows that
the same matrices work for B, giving SVDs A = UDVT, B = UDWT. Then A = B(WVT) as
claimed. �

223

33.2 Uniqueness of Normal Forms

We now present a proof of the uniqueness of normal forms for conditioning morphisms.
Some preliminary facts:

Proposition 33.6 Let X ∼ N (µX, ΣX) and Y ∼ N (µY, ΣY) be independent. Then X|(X = Y)
has distribution N (µ̄, Σ̄) given by

µ̄ = µX + ΣX(ΣX + ΣY)
+(µY − µX)

Σ̄ = ΣX − ΣX(ΣX + ΣY)
+ΣX

In programming terms, this is written

let x = N(µX, ΣX) in (x =:= N(µY, ΣY)); return x

and corresponds to the observe statement from []

x = normal(µX,ΣX); observe(normal(µY,ΣY), x)

Corollary 33.7 No 1-dimensional observe statement leaves the prior N (0, 1) unchanged.

PROOF Conditioning decreases variance. If we observe from N (µ, σ2), the variance of the
posterior is

1− (1 + σ2)−1 < 1. �

Proposition 33.8 Consider a morphism κ : n ; 0 in Cond(Gauss) given by

κ(x) = (Ax =:= ≡) (104)

where A ∈ Rr×n is in reduced row echelon form with no zero rows, and η ∈ Gauss(0, r). Then the
matrix A and distribution η are uniquely determined.

PROOF We will probe κ by applying the condition 104 to different priors ψ ∈ Gauss(0, n),
giving either a result ψ′ ∈ Gauss(0, n) or ⊥.

Let S ⊆ Rr be the support of η and W = {x ∈ Rn : Ax ∈ S}. We can recover W from
observational behavior, because for deterministic priors ψ = x0, we have ψ′ 6= ⊥ iff x0 ∈ W.
We have κ = ⊥ iff W = ∅. Assume W is nonempty now.

Next, we can identify the nullspace K of A by considering subspaces along which no
conditioning updates happens. Call an affine subspace V ⊆ Rn vacuous if for all ψ � V we
have ψ′ = ψ. Any such V must be contained in W. We claim that every maximal vacuous
subspace is of the form K + x0 where x0 ∈W:

Every space of the form K + x0 is clearly vacuous: If ψ � K then the condition (104)
becomes constant as Ax0 =:= η. Because by assumption Ax0 ∈ S, this condition is vacuous
and can be discarded without effect.

Let V be any vacuous subspace and x0 ∈ V. We show V ⊆ x0 + K: Assume there is any
other x1 ∈W such that x1 − x0 /∈ K and consider the 1-dimensional prior

t ∼ N (0, 1), x = x0 + t(x1 − x0)

224

Let d = A(x1 − x0) 6= 0 and find an invertible matrix T such that Td = (1, 0, . . . , 0)T. The
condition becomes

(t, 0, . . . , 0) =:= Tη − TAx0.

All but the first equations do not involve t. By commutativity, they can be computed inde-
pendently, resulting in an updated right-hand side and a 1-dimensional condition t =:= η′

with η′ either a Gaussian or ⊥. By 33.7, such a condition cannot leave the prior N (0, 1)
unchanged, contradicting vacuity of V.

Having reconstructed K, the matrix A in reduced row echelon form is determined uniquely
by its nullspace. Group the coordinates x1, . . . , xn into exactly r pivot coordinates xp and
n− r free coordinates xu. Setting xu = 0 in (104) results in the simplified condition xp =:= η. It
remains to show that we can recover the observing distribution µ from observational behav-
ior. Intuitively, if we put a flat enough prior on xp, the posterior will resemble µ arbitrarily
closely:

Let µ = N (b, Σ) and consider xp ∼ N (λI) for λ → ∞. The matrix (I + λ−1Σ) is invert-
ible for all large enough λ. By the formulas 33.6, the mean of the posterior is

µ̄ = (I + λ−1Σ)−1µ
λ→∞−−−→ µ

For the covariance, we truncate Neumann’s series as

(I + λ−1Σ)−1 = I − λ−1Σ + o(λ−2)

to obtain
Σ̄ = λI − λ(I + λ−1Σ)−1 = Σ + o(λ−2)

λ→∞−−−→ Σ �

33.3 Implementation

We have implemented the operational semantics of the Gaussian language of Section 17 in
Python and F# [Stein, 2021]. We showcase some simple models beyond those in Section 16.
In each example, we plot 100 samples, their mean (red) and standard deviation ±3σ (blue):

Listing 1: Gaussian regression (Fig. 12)

xs = [1.0, 2.0, 2.25, 5.0, 10.0]

ys = [−3.5, −6.4, −4.0, −8.1, −11.0]

a = Gauss.N(0,10)

b = Gauss.N(0,10)

f = lambda x: a*x + b

for (x,y) in zip(xs,ys):
Gauss.condition(f(x), y + Gauss.N(0,0.1))

225

Figure 12: Gaussian regularized regression example (Ridge regression)

Listing 2: 1-dimensional Kálmán filter (Fig. 13)

xs = [1.0, 3.4, 2.7, 3.2, 5.8, 14.0, 18.0, 11.7, 19.5, 19.2]

x = [0] * len(xs)
v = [0] * len(xs)

Initial parameters
x[0] = xs[0] + Gauss.N(0,1)

v[0] = 1.0 + Gauss.N(0,10)

for i in range(1,len(xs)):
Predict movement
x[i] = x[i−1] + v[i−1]
v[i] = v[i−1] + Gauss.N(0,0.75)

Make noisy observations
Gauss.condition(x[i] + Gauss.N(0,1),xs[i])

226

Figure 13: Kálmán filter example

34 Appendix to Chapter V

34.1 Results on quasi-Borel spaces

Proposition 34.1 The functors Σ, M take discrete spaces to discrete spaces.

PROOF If X is a discrete quasi-Borel space, then every A ⊆ X is measurable, because if
α : R→ X is simple then so is χAα. For the converse, we need to show that if X is a discrete
measurable space and f : R → X is measurable, then f is simple. It suffices to show that
the image of f is countable. The following argument is due to Ohad Kammar: Restrict our
attention to f : R → J where J is the image of f equipped it with the discrete σ-algebra.
Then f is still measurable and now also surjective. Pick any set-theoretic section g : J → R

to f , then g is measurable because J is discrete. So J is a measurable retract of R and hence
standard Borel. A standard Borel space which is also discrete must be countable. �

Proposition 34.2 The functors Σ, M take indiscrete spaces to indiscrete spaces.

PROOF If X is an indiscrete measurable space then MX obtains the indiscrete quasi-Borel
structure because every function into X is measurable. Conversely if MX = Set(R, X), we
need to show that ΣX = {∅, X}. For any A ⊆ X, if there exist points x ∈ A, y /∈ A, pick a
non-Borel set S ⊆ R and let f : R → X send S to x and its complement to y. Then f ∈ MX

but χA f /∈ M2, hence χA is not a morphism. �

34.2 Normalization of First-order Expression

We will only be considering logical relations at first-order types. The crucial advantage over
the general definition (Figure 11) is that in the function case σ → τ, we need only consider
σ ∈ {N, B}. Arguments of these types are explicitly definable, which reduces the logical
relation to a more manageable form. For boolean arguments, we merely need to check the
behavior in inputs true, false, which don’t involve any new names.

(λx.M1) Rval
B→τ (λx.M2)⇔ ∀b ∈ {true, false}, M1[b/x] Rexp

τ M2[b/x] (105)

227

For name arguments, we need to check the cases of names (n1, n2) which are either already
in relation, or both fresh and related.

(λx.M1) Rval
N→τ (λx.M2)⇔ ∀(n1, n2) ∈ R, M1[n1/x] Rexp

τ M2[n2/x] (106)

& ∀(n1, n2) /∈ s1 × s2, M1[n1/x] (R⊕ {(n1, n2)})exp
τ M2[n2/x]

Notation: If R : s0 � s1 and S : s1 � s2 are spans, we let RS denote their relational
composite in diagrammatic (reverse) order, meaning that n1 RS n3 if n1 R n2 and n2 S n3 for
some n2 ∈ s2. Note the identity

(R⊕ R′)(S⊕ S′) = RS⊕ R′S′ (107)

Lemma 34.3 (Transitivity) If σ is a first-order type, Mi ∈ Expσ(si) for i = 1, 2, 3 and R : s1 �
s2, S : s2 � s3 are spans such that M1 Rσ M2 and M2 Sσ M3, then M1 RSσ M3.

PROOF We argue by induction over σ. The statement is immediate on ground types; the case
σ = N precisely matches the definition of relation composition. We show the case for related
terms (λx.Mi) of type σ = N→ τ and i = 1, 2, 3 and with to derive (λx.M1) RSN→τ (λx.M3)

according to (106). We distinguish two cases: If (n1, n2) ∈ R, (n2, n3) ∈ S, we have

M1[n1/x] Rτ M2[n2/x] M2[n2/x] Sτ M3[n3/x]

and use the inductive hypothesis to obtain

M1[n1/x] RSτ M3[n3/x]

On the other hand, if we have fresh arguments (n1, n3) /∈ s1 × s3, we pick any n2 /∈ s2 and
have

M1[n1/x] (R⊕ {(n1, n2)})τ M2[n2/x] M2[n2/x] (S⊕ {(n2, n3)})τ M3[n3/x]

By inductive hypothesis and (107)

M1[n2/x] (RS⊕ {(n1, n3)})τ M3[n3/x]

as desired. The case B → τ is analogous and no fresh names need even be considered. The
expression case follows from the inductive hypothesis and (107). �

The following lemma shows that the definition of Pub(M, s) is well-defined

Proposition 34.4 Let σ be a first-order type. For every M ∈ Expσ(t) and s ⊆ t, there exists a least
set u with s ⊆ u and M ids M.

PROOF If s ⊆ u1, u2 have the property M (idu1)σ M and M (idu2)σ M, then by transitivity
(Lemma 34.3), so does the composite idu1 idu2 = id(u1∩u2). We can therefore take u to be the
intersection of all such sets. �

Lemma 34.5 Let σ be a first-order type. Let Mi ∈ Expσ(s⊕ ti) and suppose there is some R : t1 �
t2 such that M1 (ids ⊕ R)σ M2. Then R restricts to a bijection Leak(M1, s) ∼= Leak(M2, s).

228

PROOF Write ui = Leak(Mi, s). We know that RR−1 = iddom(R), so M1 (ids⊕dom(R))σ M1 by
transitivity. As u1 is least with this property, u1 ⊆ dom(R).

Now consider the restriction R|u1 of R to u1. Because R|u1 = idu1 R, transitivity implies
M1 (ids⊕R|u1)σ M2. Repeating the same argument for M2 shows that M2 (ids⊕ cod(R|u1))σ M2

and by minimality u2 ⊆ cod(R|u1). The symmetric argument shows that R|u1 is a bijection
u1
∼= u2. �

Proposition 34.6 Let τ be a first-order type and M ∈ Expτ(s⊕ t) with M ∈ Safes
τ. Then

(i) pnf(M, s) is well-defined up to renaming bound variables and names

(ii) if M is a value, so is pnf(M, s)

(iii) pnf(M, s) ∈ Expτ(s), that is pnf(M, s) eliminates the private names t

(iv) pnf(M, s) ∈ Safes
τ

(v) M (ids)τ pnf(M, s)

PROOF (ii) is clear by construction. (iv) follows trivially from (iii). We prove (iii), (i) and
(v) by induction on τ, following the construction of the normal form pnf(M, s). For (iii), the
induction steps are clear and so is the case where M is a value of type B. If M is a value
of type N, then M (ids)N M implies that M ∈ s, and so pnf(M, s) = M ∈ ExpN(s). For (i),
the cases where M is a value are clear, and the expression case follows because we made a
canonical choice of u = Leak(V, s) in the construction of pnf(M, s). For (v), the expression
case follows directly from the inductive hypothesis and the definition of logical relations. In
the case where M is a value and τ = N→ σ, we η-expand and write

M = λx.if x = n ∈ s⊕ t then Mn else M0.

We need to verify that M0 (ids⊕{x})σ pnf(M0, s⊕ {x}) and that Mn (ids)σ pnf(Mn, s) for n ∈ s,
both of which follow from the inductive hypothesis. The case that M is a value and σ = B→
τ is handled similarly. �

Theorem 34.7 Let σ be a first-order type and let Mi ∈ Expσ(s⊕ ti) for i = 1, 2. The following are
equivalent:

(i) M1 (ids)σ M2;

(ii) Mi ∈ Safes
σ and pnf(M1, s) = pnf(M2, s) after possibly renaming bound variables and names.

PROOF If Mi ∈ Safes
τ and pnf(M1, s) = pnf(M2, s), then pnf(M1, s) (ids)σ pnf(M2, s) and so

by transitivity of logical relations (34.3) and Proposition 34.6 we have M1 (ids)σ M2.

For the converse, suppose that M1 (ids)σ M2. By transitivity, it is clear that Mi (ids)σ Mi.
To show that pnf(M1, s) = pnf(M2, s), we argue by induction, following the construction

of the normal forms. The base case is clear. Now consider the inductive step at values. In
the case that σ = N→ τ, we η-expand and write

Mi = λx.if x = n ∈ s⊕ ti then Mi
n else Mi

0.

229

By (106), we have M1
n (ids)σ M2

n for all n ∈ s and M1
0 (ids⊕{x})σ M2

0. By our inductive hy-
pothesis, this means pnf(M1

n, s) = pnf(M2
n, s) and pnf(M1

0, s⊕ {x}) = pnf(M2
0, s⊕ {x}). It

follows that pnf(M1, s) = pnf(M2, s). The case that σ = B→ τ is the analogous.

In the case of expressions, let Vi ∈ Valσ(s⊕ ti ⊕ t′i) be the values such that s⊕ ti ` Mi ⇓
(t′i)Vi. We know that M1 (ids)σ M2, so there is some R : t′1 � t′2 such that V1 (ids ⊕ R)σ V2.
Let ui = Leak(Vi, s) ⊆ t′i. By Lemma 34.5, R restricts to a bijection u1

∼= u2. Without loss of
generality, rename the names u2 in V2 using R so we have u1 = u2 = u and V1 (ids⊕u)σ V2.
This is possible because all names in u2 will be bound in a ν-abstraction anyways. Now
Vi ∈ Safes⊕ui

σ hence by inductive hypothesis, pnf(V1, s⊕ u) = pnf(V2, s⊕ u) and we obtain

pnf(M1, s) def
= νu.pnf(V1, s⊕ u) = νu.pnf(V2, s⊕ u) def

= pnf(M2, s). �

230

	Introduction
	Contributions
	Technical Summary

	I Background
	Overview of Probabilistic Programming
	Semantics of Programming Languages
	Categorical Semantics and Internal Languages
	Monadic Metalanguage
	Computational -calculus
	Fine-grained call-by-value
	Graphical Language: String Diagrams
	Monads and Algebraic Effects
	Example: Monads of Linear Combinations
	Commutative Monads
	Affine Monads
	Finitary Monads

	Second-order Algebraic Theories

	Traditional Models of Probability
	Finite Probability
	Measure-Theoretic Probability
	Higher-order Probability
	Continuous Kernels, Duality, GNS Construction

	II Categorical Probability Theory
	Generalized Probability Monads
	Traditional Probability Monads
	Writer
	Multisets (Bags)
	Negative Probabilities
	Nondeterminism
	Logic Programming and Unification
	Name Generation

	CD- and Markov Categories
	Definition
	Examples of Markov Categories
	Kleisli Categories
	Traditional Models of Probability
	Categories of Comonoids
	Aside on Semicartesian Theories

	Determinism

	Internal Language of CD Categories
	Equational Theory
	Semantics
	Syntactic Category

	Concepts of Synthetic Probability
	Independence
	Almost-sure Equality, Absolute Continuity and Supports
	Representable Supports
	Conditionals

	Dataflow Axioms
	Positivity
	Causality

	III The Beta-Bernoulli Process and Algebraic Effects
	Introduction
	Beta-Bernoulli
	Towards an Algebraic Theory
	Pólya's Urn, Exchangeability and Abstraction
	Algebraic Effects, Monads and Models of Synthetic Probability
	Outline

	An Algebraic Presentation of the Beta-Bernoulli Process
	An Algebraic Presentation of Finite Probability
	A Parameterized Signature for Beta-Bernoulli
	Axioms for Beta-Bernoulli

	A Complete Interpretation in Measure Theory
	Background on Bernstein polynomials
	Normal Forms and Completeness
	Stone's Normal Form for Rational Convex Sets
	Normalization of nu-free Terms
	Normalization of Full Terms
	Proof of Completeness

	Extensionality and Syntactical Completeness
	Extensionality for Closed Terms
	Extensionality for Ground Terms
	Relative Syntactical Completeness
	Verification of Pólya's urn

	A Model of Synthetic Probability
	Conclusion and Related Work

	IV Compositional Semantics for Conditioning
	Introduction
	Outline

	A Language for Gaussian Probability
	Recap of Gaussian Probability
	Types and Terms of the Gaussian language
	Operational Semantics

	Synthetic Foundations of Conditioning
	Compositional Conditioning – The Cond Construction
	Obs – Open Programs with Observations
	Cond – Contextual Equivalence of Open Programs
	Laws for Conditioning

	Conditioning on Equality
	Scoring
	Aside on Uninformative Priors and Frobenius Units

	Equational Presentation of the Gaussian Language
	Denotational Semantics
	Equational Theory
	Normal forms

	Context, Related Work and Outlook
	Symbolic Disintegration and Paradoxes
	Other Directions

	V Name Generation and Probability on Function Spaces
	Introduction
	Outline

	Name Generation and the Nu-Calculus
	Operational Semantics and Observational Equivalence
	Categorical Semantics

	Aside on Traditional Models of Name Generation
	Nominal Sets
	Name Generation Monad

	Name Generation at Higher Types
	The Privacy Equation
	Privacy contradicts Positivity
	Towards Probabilistic Semantics for Name Generation

	Quasi-Borel spaces and Higher-Order Probability
	Cartesian closure
	Probability on Quasi-Borel Spaces
	Quasi-Borel Spaces model the Nu-Calculus

	The Privacy Equation in Qbs
	Consequences

	Full Abstraction at First-Order Types
	A Normal Form for Observational Equivalence
	Proof of Full Abstraction

	Related Work and Context
	Names in Computer Science and Statistics
	Compiler Optimization, Memory and Garbage Collection
	Full Abstraction at Higher Types
	Other Models of Higher-Order Probability
	Outlook: A Categorical Theory of Information Leaking

	VI Conclusion
	VII Appendix
	Appendix to part:synthpt
	Appendix to part:betabernoulli
	Example derivations
	Allowing zero hyperparameters

	Appendix to part:conditioning
	Linear Algebra
	Uniqueness of Normal Forms
	Implementation

	Appendix to part:namegeneration
	Results on quasi-Borel spaces
	Normalization of First-order Expression

